Thermodynamique, Ondes, Numérique, Interfaces, Combustion

Effets thermiques dans les systèmes en rotation

Ondes et interfaces immergées

Modélisation des écoulements multiphasiques réactifs

Modélisation et simulation de la propagation des feux de forêts

Thermodynamique des mélanges

Thermodynamics, Numerical Waves, Interfaces, Combustion Team
Présentation

The TONIC team is developing an activity of modeling of strongly multi-scale phenomena. It covers in particular multiphase and/or reactive flows, from the scale of the isolated injector (a few mm) to the scale of a fully developed forest fire (several hectares). 
Adapted numerical methods are developed in parallel, in particular for soil imaging (detection of slicks by acoustic analysis), or for the modeling of radiative transfers.

In parallel to these multi-scale developments, analytical work is carried out to support the construction of models. An important research effort is devoted to the modeling of the thermodynamics of multiphase mixtures (thermochemical equilibrium calculations, complex thermodynamic closures), or to the development of reduced kinetic models for combustion.

Responsable

  • Chargé de Recherche CNRS - HDR
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
x >

Annuaire personnel permanent

  • Chargé de Recherche CNRS - HDR
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Professeur des Universités AMU - émérite
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Professeur des Universités AMU - émérite
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Chargée de Recherche CNRS
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Maître de Conférences AMU
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Maître de Conférences AMU - HDR
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
x >

Doctorants, Post-Doctorants et CDD

x >

Dernières publications de l'équipe

  • Kevin Turgut, Ashwin Chinnayya, Pierre Boivin, Omar Dounia. A simplified thermodynamically-consistent single-step mechanism for hydrogen combustion. International Journal of Hydrogen Energy, 2025, 177, pp.151527. ⟨10.1016/j.ijhydene.2025.151527⟩. ⟨hal-05404957⟩ Plus de détails...
  • A. Fayet, Pierre Boivin, J. Perez Manes, S. Mimouni, T. Cadiou. Validation of NEPTUNE_CFD for single-phase natural convection. Nuclear Engineering and Design, 2025, 442, pp.114250. ⟨10.1016/j.nucengdes.2025.114250⟩. ⟨hal-05344238⟩ Plus de détails...
  • Marc Le Boursicaud, Song Zhao, Jean-Louis Consalvi, Pierre Boivin. Modeling self-ignition of high-pressure hydrogen leaks in confined space. Combustion and Flame, 2025, 280, pp.114386. ⟨10.1016/j.combustflame.2025.114386⟩. ⟨hal-05344209⟩ Plus de détails...
  • Xi Deng, Bin Xie, Omar Matar, Pierre Boivin. A novel hybrid approach for accurate simulation of compressible multi-component flows across all-Mach number. Journal of Computational Physics, 2025, 540, pp.114282. ⟨10.1016/j.jcp.2025.114282⟩. ⟨hal-05343677⟩ Plus de détails...
  • Jinhua Lu, Song Zhao, Pierre Boivin. A lattice-Boltzmann inspired finite volume solver for compressible flows. Computers and Mathematics with Applications, 2025, 187, pp.50-71. ⟨10.1016/j.camwa.2025.03.007⟩. ⟨hal-05086335v1⟩ Plus de détails...
x >

Dernières rencontres scientifiques

Projets en cours

Soutenances de thèses et HDR

13 janvier 2026 - Hybrid Lattice-Boltzmann method for multiphase flows / PhD Defense Thomas Gregorczyk
Doctorant : Thomas GREGORCZYK 

Date et lieu : le mardi 13 janvier, amphi n°3 de Centrale Méditerranée

Abstract: The goal of this PhD is to present new numerical schemes that are able to carry out multiphase flows simulations. The method will lie in the framework of Lattice-Boltzmann methods that have been actively developed at M2P2 for several years for different applications : compressible flows, reactive flows, detonation, fluid-structure interaction, ...
This work aims at creating a stable scheme for athermal configurations at different density ratios and Reynolds numbers. Recent progress from the lab will be added to the multiphase LBM framework : a hybrid scheme solving an Allen-Chan with a finite volume solver, low-Mach number approximation, conservative scheme.

These new models will be tested thanks to different methods. First, we will make sure analytically that our scheme converges to a relevant set of macroscopic equations. Then, we will test these schemes against classical academical test cases such as : Poiseuille, Laplace, Rayleigh-Taylor, ...

The final target test case will be a jet which requires high Reynolds number flows simulations, inlet / outlet boundary conditions and which is useful for a wide range of applications.

Jury :
Raphaël LOUBÈRE, Rapporteur, DR CNRS, Institut de Mathématiques de Bordeaux 
Timm KRÜGER, Rapporteur, PR, University of Edinburgh                   
Gauthier WISSOCQ, Examinateur, IR, CEA CESTA                                 
Bénédicte CUENOT, Examinatrice, Senior Scientist, CERFACS                     
Vincent MOUREAU, Président du jury, DR CNRS, CORIA                                
Pierre BOIVIN, Directeur de thèse, CR CNRS, M2P2                                 
Song ZHAO, Co-encadrant de thèse, IR CNRS, M2P2            

8 octobre 2025 - Two-phase thermo-hydraulic modeling of a confined stagnant flow for the prediction of Critical Heat Flux / Adrien Fayet PhD Defense
Doctorant : Adrien FAYET

Date et lieu : mercredi 8 octobre 2025 à 14h00, amphi n°3, Centrale Méditerranée - M2P2 - 38 Rue Frédéric Joliot Curie, 13013 Marseille

Abstract: Irradiation capsules are used to study material/fuel behavior under neutron flux for long-term effects, accidental scenarios, and medical isotope production. Unlike in-core loop devices, where the heated rod is cooled with forced convection with the use of pumps, capsules rely on natural convection for the samples cooling.
The heat released by a nuclear fuel rod is transferred to the surrounding water and can eventually reach the Onset of Nucleate Boiling (ONB). Furthermore, if the Critical Heat Flux (CHF) is exceeded, an instantaneous transition from nucleate to film boiling occurs, causing sudden fuel overheating and potential damage. Predicting the CHF is imperative for safety and design. It is a complex task as this phenomenon depends on various parameters regarding the heated surface, the liquid and vapor phases, and their interactions (nucleate boiling, bubble dynamics, condensation, etc…). Although experiments are the best way to predict the boiling crisis, only limited data is available on such specific device, opening the possibility of using mechanistic numerical approaches to study the phenomenon.
This thesis investigates the capabilities of three different numerical tools for CHF estimation in the FUel Irradiation CApsule (FUICA). In the absence of experimental data for the FUICA, these approaches are assessed using the data provided by the Pressurized Water Capsule (PWC), featuring a similar configuration and working range as the intended FUICA application.
First, the CATHARE system code (reference code for safety analysis and licensing) is assessed. Although the natural convective flow is accurately reproduced, the CHF estimation diverges due to the application of an empirical correlation that is not tailored to this specific configuration. The absence of CHF experimental data and correlations for such flow prevents its modification, leading us to a finer-scale study.
Therefore a mechanistic approach is adopted using NEPTUNE_CFD. The code is firstly validated for single-phase natural convection, before being assessed for CHF prediction on the PWC irradiation capsule. New implemented advanced boiling and interfacial heat transfer models improve the code performance during the boiling crisis regarding the PWC data. These models yield acceptable CHF predictions for several geometries at high pressures. However, these simulations demand significant computing resources, highly restricting the use of NEPTUNE_CFD.
Given the limitations of existing tools, a simple 1.5D code (CLARISSE) is developed from scratch during this thesis specifically for irradiation capsules simulation and CHF prediction, aiming for a balance between CFD-RANS accuracy and system code applicability. A four-equation mixture model is solved explicitly and coupled to the wall resolution, considering mechanical and thermal coupling of the phases. The mixture properties follow the Noble-Abel Stiffened Gas (NASG) equations, and phase change is implemented using a relaxation model. The few unknown closure terms – such as viscous friction and wall heat exchange - are up-scaled using data collected from CFD simulations. The reproduction of the PWC CHF tests shows promising results as they are comparable to NEPTUNE_CFD’s with a much lower computational time, allowing sensitivity studies in a R&D frame. Further improvements can be applied on various aspects of CLARISSE to enhance its representativeness and CHF prediction.
Finally, these three approaches are used to provide an estimation of the CHF for the FUICA. This multiscale approach provides valuable insights of the CHF mechanics. After a first application, the CLARISSE code shows interesting results and promising perspectives, paving the way towards the development of a fast and reliable tool devoted to CHF predictions in such specific applications.

Keywords: Irradiation Capsule, Critical Heat Flux, Natural convection, Computational Fluid Dynamics, Nucleate Boiling

Jury :
Benjamin DURET            Université de Rouen Normandie                                         Rapporteur
Sébastien TANGUY         Institut de Mécanique des Fluides de Toulouse                  Rapporteur
Catherine COLIN             Institut de Mécanique des Fluides de Toulouse                  Présidente
Nathalie SEILER              CEA Cadarache & Université Grenoble Alpes                    Examinatrice
Stéphane MIMOUNI         EDF R&D & Université Gustave Eiffel                                Examinateur
Pierre BOIVIN                  M2P2, Aix-Marseille Université                                           Directeur de thèse
Fabrice FRANCOIS         CEA Cadarache & Université Grenoble Alpes                    Invité
Jorge PEREZ-MANES     CEA Cadarache                                                                  Invité