Actualités

Prochaines Soutenances de Thèse

13 janvier 2026 - Hybrid Lattice-Boltzmann method for multiphase flows / PhD Defense Thomas Gregorczyk
Doctorant : Thomas GREGORCZYK 

Date et lieu : le mardi 13 janvier, amphi n°3 de Centrale Méditerranée

Abstract: The goal of this PhD is to present new numerical schemes that are able to carry out multiphase flows simulations. The method will lie in the framework of Lattice-Boltzmann methods that have been actively developed at M2P2 for several years for different applications : compressible flows, reactive flows, detonation, fluid-structure interaction, ...
This work aims at creating a stable scheme for athermal configurations at different density ratios and Reynolds numbers. Recent progress from the lab will be added to the multiphase LBM framework : a hybrid scheme solving an Allen-Chan with a finite volume solver, low-Mach number approximation, conservative scheme.

These new models will be tested thanks to different methods. First, we will make sure analytically that our scheme converges to a relevant set of macroscopic equations. Then, we will test these schemes against classical academical test cases such as : Poiseuille, Laplace, Rayleigh-Taylor, ...

The final target test case will be a jet which requires high Reynolds number flows simulations, inlet / outlet boundary conditions and which is useful for a wide range of applications.

Jury :
Raphaël LOUBÈRE, Rapporteur, DR CNRS, Institut de Mathématiques de Bordeaux 
Timm KRÜGER, Rapporteur, PR, University of Edinburgh                   
Gauthier WISSOCQ, Examinateur, IR, CEA CESTA                                 
Bénédicte CUENOT, Examinatrice, Senior Scientist, CERFACS                     
Vincent MOUREAU, Président du jury, DR CNRS, CORIA                                
Pierre BOIVIN, Directeur de thèse, CR CNRS, M2P2                                 
Song ZHAO, Co-encadrant de thèse, IR CNRS, M2P2            

11 décembre 2025 - Valorization of Pig Manure through Hydrothermal Treatment: Investigation of P and N Conversion Dynamics / PhD Defense Carolina Ochoa-Martinez
Doctorante Carolina OCHOA MARTINEZ

Date and location: Thursday, December 11, 2025, at 2:00 PM in the Forum projection room ; Arbois-Méditerranée

Abstract: Global agriculture relies heavily on non-renewable phosphorus (P) reserves and energy-intensive nitrogen (N) fertilizers to sustain crop production. At the same time, intensive livestock farming generates large volumes of liquid effluents rich in organic matter and nutrients, which, if not properly managed, can lead to environmental impacts associated with their discharge. 
To address these challenges, hydrothermal treatment of real pig manure was carried out to investigate the influence of operating conditions on P and N conversion and distribution. Comparative experiments were performed across a wide severity range (107–200 °C, 25–95 min to 300 °C, 10–60 min). The resulting solid, aqueous and oil phases were systematically characterized through physicochemical analyses and sequential phosphorus extractions. 
Results show that more than 90% of P was recovered in the solid phase. The mineralization of organic P and Al/Fe-bound P dissolution into calcium phosphates was identified as the main mechanism governing P retention in the hydrochar. Temperature emerged as the most influential parameter affecting P conversion and speciation, with strong correlations observed between P forms and the availability of metal cations (Ca, Mg, Fe, Al). Dissolved organic nitrogen remained the dominant N fraction in the aqueous phase, highlighting a major limitation in current hydrothermal valorization strategies.

Keywords: Hydrothermal treatment, pig manure, phosphorus speciation, nitrogen transformation, biocrude, process water recirculation, hydrothermal liquefaction, hydrothermal carbonization.

Jury :
Audrey VILLOT                                          Rapportrice,                                                      IMT Atlantique
Magali CASELLAS                                     Rapportrice,                                                      Université de Limoges
Boram KIM                                                 Examinatrice,                                                    INSA Lyon
Stéphan BOSTYN                                      Examinateur,                                                     Université d’Orléans
Olivier BOUTIN                                          Examinateur,                                                     Aix Marseille Université
Jean-henry FERRASSE                            Directeur de thèse,                                            Aix Marseille Université
Cristian BARCA                                        Co-directeur de thèse,                                       Aix Marseille Université
20 novembre 2025 - Numerical simulation of fluid-structure interaction using a Lattice Boltzmann Method (LBM): application to fast transient dynamics leading to structural failure / PhD defense Hippolyte Lerogeron
Doctorant : Hippolyte LEROGERON

Date et lieu : le Jeudi 20 novembre 2025 à 14h00 au laboratoire M2P2,  dans l’amphithéâtre 3, bâtiment Plot 6,  38 Rue Frédéric Joliot Curie, 13013 

Abstract: this PhD thesis investigates the numerical simulation of fast transient events involving fluid-structure interactions using advanced computational methods. The primary goal is to improve computational efficiency in parallel  environments by integrating a Lattice Boltzmann Method within a partitioned fluid-structure coupling solver. In this scope, an existing immersed boundary method is extended to compressible flow regimes in order to handle complex and moving geometries efficiently. Structural dynamics is resolved using a finite element solver. Special attention is given to the treatment of multiple scales in space and time related respectively to fluid and solid domain, enabling optimal resolution of each subsystem. The accuracy and performance of the proposed approach are validated through a series of test cases of increasing complexity, showing strong agreement with experimental results and existing numerical results. Finally, large-scale simulations involving structural fragmentation are realized to demonstrate the method's robustness and scalability for practical applications. These results offer new perspectives for the simulation of explosion-induced fluid-structure interactions, paving the way to faster and more detailed predictions.

Keywords: Fluid-Structure Interaction, Fast Transient, Lattice Boltzmann Method, Immersed Boundary Method, Finite Element, Partitioned Coupling, Fracture, Fragmentation

Jury :
Virginie DARU                     ENSAM             Rapporteure                         
Miguel FERNÁNDEZ            INRIA            Rapporteur
Marc MASSOT                Ecole Polytechnique Paris     Président
Vegard AUNE          NTNU, Norvège             Examinateur
Julien FAVIER                     Université d’Aix-Marseille     Directeur de thèse
Pierre BOIVIN                     CNRS             Co-directeur de thèse
Vincent FAUCHER               CEA Cadarache             Co-encadrant de thèse

29 octobre 2025 - Intégration des procédés membranaires dans la chaîne de production de microalgues / Soutenance de thèse de Stacy Ragueneau
Doctorante : Stacy RAGUENEAU

Date et lieu : mercredi 29 octobre à 9h00 dans l’Amphithéâtre du Cerege du Technopôle de l'Arbois-Méditerranée

Résumé : Les microalgues, capables de synthétiser des composés bioactifs variés, représentent une ressource prometteuse pour de nombreuses applications industrielles. Toutefois, leur production à grande échelle reste limitée par des contraintes biologiques, techniques et économiques. C’est dans ce contexte, que la société Innovalg a engagé une démarche innovante : intégrer les procédés membranaires dans la chaîne de production de trois microalgues marines : Odontella aurita, Phaeodactylum tricornutum et Dunaliella salina. Cette thèse, alliant génie des procédés et microbiologie marine, s’est concentrée sur trois étapes clés : (i) la purification de l’eau de mer par ultrafiltration pour la culture des microalgues, (ii) la récolte des microalgues par microfiltration et (iii) l’extraction de composés à haute valeur ajoutée. En conditions réelles de production et en comparaison de procédés conventionnels, quels que soient les volumes ou les microalgues ciblées, les procédés membranaires mènent à des croissances algales supérieures, des récupérations cellulaires amplifiées et une modification de la composition biochimique des microalgues. Ainsi, cette thèse souligne le potentiel des procédés membranaires pour améliorer la qualité et la rentabilité de la production de microalgues à grande échelle jusqu'à des TRL de 9.

Mots clés : procédés membranaires, production de microalgues, purification d’eau de mer, récolte, croissance et qualité algale.

Jury :
Sylvain GALIER, Président du jury, Professeur des Universités, Université de Toulouse
Estelle COUALLIER, Rapporteure, Chargée de Recherche, CNRS, GEPEA
João CRESPO, Rapporteur, Professeur des Universités, Université de Lisbonne
Filipa LOPES, Examinatrice, Professeure des Universités, Université Paris Saclay
Élodie NICOLAU, Examinatrice, Cadre scientifique, IFREMER
Philippe MOULIN, Directeur de thèse, Professeur des Universités, Aix-Marseille Université
Clémence CORDIER, Co-directrice de thèse, Maître de Conférences, Aix-Marseille Université
Magalie CLAEYS-BRUNO, Membre invité, Professeure des Universités, Aix-Marseille Université
Frédéric CHENIER, Membre invité, Cadre scientifique, France Naissain
8 octobre 2025 - Two-phase thermo-hydraulic modeling of a confined stagnant flow for the prediction of Critical Heat Flux / Adrien Fayet PhD Defense
Doctorant : Adrien FAYET

Date et lieu : mercredi 8 octobre 2025 à 14h00, amphi n°3, Centrale Méditerranée - M2P2 - 38 Rue Frédéric Joliot Curie, 13013 Marseille

Abstract: Irradiation capsules are used to study material/fuel behavior under neutron flux for long-term effects, accidental scenarios, and medical isotope production. Unlike in-core loop devices, where the heated rod is cooled with forced convection with the use of pumps, capsules rely on natural convection for the samples cooling.
The heat released by a nuclear fuel rod is transferred to the surrounding water and can eventually reach the Onset of Nucleate Boiling (ONB). Furthermore, if the Critical Heat Flux (CHF) is exceeded, an instantaneous transition from nucleate to film boiling occurs, causing sudden fuel overheating and potential damage. Predicting the CHF is imperative for safety and design. It is a complex task as this phenomenon depends on various parameters regarding the heated surface, the liquid and vapor phases, and their interactions (nucleate boiling, bubble dynamics, condensation, etc…). Although experiments are the best way to predict the boiling crisis, only limited data is available on such specific device, opening the possibility of using mechanistic numerical approaches to study the phenomenon.
This thesis investigates the capabilities of three different numerical tools for CHF estimation in the FUel Irradiation CApsule (FUICA). In the absence of experimental data for the FUICA, these approaches are assessed using the data provided by the Pressurized Water Capsule (PWC), featuring a similar configuration and working range as the intended FUICA application.
First, the CATHARE system code (reference code for safety analysis and licensing) is assessed. Although the natural convective flow is accurately reproduced, the CHF estimation diverges due to the application of an empirical correlation that is not tailored to this specific configuration. The absence of CHF experimental data and correlations for such flow prevents its modification, leading us to a finer-scale study.
Therefore a mechanistic approach is adopted using NEPTUNE_CFD. The code is firstly validated for single-phase natural convection, before being assessed for CHF prediction on the PWC irradiation capsule. New implemented advanced boiling and interfacial heat transfer models improve the code performance during the boiling crisis regarding the PWC data. These models yield acceptable CHF predictions for several geometries at high pressures. However, these simulations demand significant computing resources, highly restricting the use of NEPTUNE_CFD.
Given the limitations of existing tools, a simple 1.5D code (CLARISSE) is developed from scratch during this thesis specifically for irradiation capsules simulation and CHF prediction, aiming for a balance between CFD-RANS accuracy and system code applicability. A four-equation mixture model is solved explicitly and coupled to the wall resolution, considering mechanical and thermal coupling of the phases. The mixture properties follow the Noble-Abel Stiffened Gas (NASG) equations, and phase change is implemented using a relaxation model. The few unknown closure terms – such as viscous friction and wall heat exchange - are up-scaled using data collected from CFD simulations. The reproduction of the PWC CHF tests shows promising results as they are comparable to NEPTUNE_CFD’s with a much lower computational time, allowing sensitivity studies in a R&D frame. Further improvements can be applied on various aspects of CLARISSE to enhance its representativeness and CHF prediction.
Finally, these three approaches are used to provide an estimation of the CHF for the FUICA. This multiscale approach provides valuable insights of the CHF mechanics. After a first application, the CLARISSE code shows interesting results and promising perspectives, paving the way towards the development of a fast and reliable tool devoted to CHF predictions in such specific applications.

Keywords: Irradiation Capsule, Critical Heat Flux, Natural convection, Computational Fluid Dynamics, Nucleate Boiling

Jury :
Benjamin DURET            Université de Rouen Normandie                                         Rapporteur
Sébastien TANGUY         Institut de Mécanique des Fluides de Toulouse                  Rapporteur
Catherine COLIN             Institut de Mécanique des Fluides de Toulouse                  Présidente
Nathalie SEILER              CEA Cadarache & Université Grenoble Alpes                    Examinatrice
Stéphane MIMOUNI         EDF R&D & Université Gustave Eiffel                                Examinateur
Pierre BOIVIN                  M2P2, Aix-Marseille Université                                           Directeur de thèse
Fabrice FRANCOIS         CEA Cadarache & Université Grenoble Alpes                    Invité
Jorge PEREZ-MANES     CEA Cadarache                                                                  Invité

More informations

Contact us for more information on M2P2 seminars and other scientific events.

in charge of Seminars:

Emmanuel Bertrand


Responsable Communication: 

Elena ROSU