The EPM team devotes its activities to applied research and its transfer to the industrial world where scientific, economic and confidentiality requirements of the treated subjects interact.
The activities of the team are in strong progression and cover a broad spectrum: from the design of new membranes and modules to the development and installation of new industrial membrane processes. The main objective of the Membrane Processes team is to improve the efficiency of these processes limited by clogging and the cost of implementation, while providing innovative solutions for the treatment of specific effluents and the purification of high value-added compounds.
Any evolution of the processes can only be based on an in-depth knowledge of the problems that generate them and the choices that can be made. The scientific issues raised are complex and multiple. In this context, most of the research activities are carried out in partnership with an industrial company within the framework of a research collaboration contract. Starting from an idea developed in the laboratory or an industrial problem, it is a question here of working in an industrial-EPM partnership in a realistic framework of operating variables.
The optimization of membrane processes requires a better understanding of the mechanisms involved. The activities of the EPM are divided into 6 interrelated research axes:
- Membrane bioreactor (Benoit Marrot) - Membrane characterization and drinking water (Yvan Wyart) - Process Industrialization and CFD (Philippe Moulin) - Transport Properties and Metrology (Jean Philippe Bonnet) - Effluent treatment (Emilie Carretier) - Process Intensification (Mathias Monnot)
Plate forme de 20 pilotes de filtration 1 pilote de perméation gazeuse 2 pilote de pervaporation 1 OI haute pression, NF, 3 pilotes de screening 9 pilotes de MF-UF 1 BRM 1 station de production d'eau potable 20m3.J-1 1 unité de purification d'eau 240m3.J-1 1 BRM industriel 1 pilote multi scales MF-UF
Partenaires industriels et académiques
Dernières Publications de l'équipe
2024
Aymeric Fabien, Guillaume Lefebvre, Elisabeth Badens, Brice Calvignac, Damien Chaudanson, et al.. Contact angle of ethanol, water, and their mixtures on stainless steel surfaces in dense carbon dioxide. Journal of Colloid and Interface Science, 2024, 655, pp.535-545. ⟨10.1016/j.jcis.2023.10.163⟩. ⟨hal-04316090⟩ Plus de détails...
Hypothesis Contact angle can be a key parameter in chemical engineering. However, the development and the optimization of numerous processes using supercritical CO2, considered as environmentally friendly, requires new measurements under dense CO2 atmosphere. Besides, the influence of the roughness or the wetting regime on the contact angle is known at ambient conditions but remains to be discussed for systems under high pressure. Experimental Contact angle measurements of ethanol, water, and their mixtures, with ethanol mass fractions ranging from 0.25 to 0.75, on two stainless steels in saturated CO2 at pressures ranging from 0.1 MPa to 15.1 MPa, and at 313 K and 333 K were carried out in a set-up improving mass transfer between the studied liquid and the continuous fluid phase. Stainless steel surfaces have been characterized by atomic force and scanning electron microscopies allowing the application of the Wenzel equation. Findings Ethanol wetted totally both stainless steels while contact angles of all other liquids were increased by the rise of pressure, with contact angles up to 128 ° for water at 15.1 MPa. Trapped bubbles were observed at the solid/liquid interface and the bubble formation is discussed. Furthermore, the potential influence of bubble presence on the wetting regime is prospected through the question: could the pressure rise modify the wetting regime?
Aymeric Fabien, Guillaume Lefebvre, Elisabeth Badens, Brice Calvignac, Damien Chaudanson, et al.. Contact angle of ethanol, water, and their mixtures on stainless steel surfaces in dense carbon dioxide. Journal of Colloid and Interface Science, 2024, 655, pp.535-545. ⟨10.1016/j.jcis.2023.10.163⟩. ⟨hal-04316090⟩
J. Yang, A. Mouilleron, M. Monnot, C. Cordier, P. Moulin. Ultrafiltration for the biosecurity of fish production: The case of a sturgeon nursery. Aquacultural Engineering, 2023, 103, pp.102366. ⟨10.1016/j.aquaeng.2023.102366⟩. ⟨hal-04202096⟩ Plus de détails...
J. Yang, A. Mouilleron, M. Monnot, C. Cordier, P. Moulin. Ultrafiltration for the biosecurity of fish production: The case of a sturgeon nursery. Aquacultural Engineering, 2023, 103, pp.102366. ⟨10.1016/j.aquaeng.2023.102366⟩. ⟨hal-04202096⟩
Emilie Gout, Fatimatou Toure Lo, Mathias Monnot, Olivier Boutin, Pierre Vanloot, et al.. Coupling membrane processes with wet air oxidation for the remediation of industrial effluents. Chemical Engineering Journal, 2023, 472, pp.144937. ⟨10.1016/j.cej.2023.144937⟩. ⟨hal-04202142⟩ Plus de détails...
Emilie Gout, Fatimatou Toure Lo, Mathias Monnot, Olivier Boutin, Pierre Vanloot, et al.. Coupling membrane processes with wet air oxidation for the remediation of industrial effluents. Chemical Engineering Journal, 2023, 472, pp.144937. ⟨10.1016/j.cej.2023.144937⟩. ⟨hal-04202142⟩
Adrien Magne, Emilie Carretier, Lilivet Ubiera Ruiz, Thomas Clair, Morgane Le Hir, et al.. Recovery of Homogeneous Platinoid Catalysts from Pharmaceutical Media: Review on the Existing Treatments and the Perspectives of Membrane Processes. Membranes, 2023, 13 (8), pp.738. ⟨10.3390/membranes13080738⟩. ⟨hal-04202121⟩ Plus de détails...
Catalyst recovery is a major challenge for reaching the objectives of green chemistry for industry. Indeed, catalysts enable quick and selective syntheses with high reaction yields. This is especially the case for homogeneous platinoid catalysts which are almost indispensable for cross-coupling reactions often used by the pharmaceutical industry. However, they are based on scarce, expensive, and toxic resources. In addition, they are quite sensitive and degrade over time at the end of the reaction. Once degraded, their regeneration is complex and hazardous to implement. Working on their recovery could lead to highly effective catalytic chemistries while limiting the environmental and economic impacts of their one-time uses. This review aims to describe and compare conventional processes for metal removal while discussing their advantages and drawbacks considering the objective of homogeneous catalyst recovery. Most of them lead to difficulty recycling active catalysts due to their ability to only treat metal ions or to chelate catalysts without the possibility to reverse the mechanism. However, membrane processes seem to offer some perspectives with limiting degradations. While membranes are not systematically the best option for recycling homogeneous catalysts, current development might help improve the separation between pharmaceutical active ingredients and catalysts and enable their recycling.
Adrien Magne, Emilie Carretier, Lilivet Ubiera Ruiz, Thomas Clair, Morgane Le Hir, et al.. Recovery of Homogeneous Platinoid Catalysts from Pharmaceutical Media: Review on the Existing Treatments and the Perspectives of Membrane Processes. Membranes, 2023, 13 (8), pp.738. ⟨10.3390/membranes13080738⟩. ⟨hal-04202121⟩
In this study, we present a new approach for the growth monitoring of crystals using micro X-ray computed tomography (XCT). This technique allows us to track the evolution of the total crystal volume and surface in real time, and to calculate the growth rate. By segmenting the 3D XCT images using a robust method, we are able to extract detailed information about the crystals, such as their number, volume, diameter, and sphericity. Additionally, we determine the growth rates of individual crystal faces. Our method has the potential to greatly benefit the pharmaceutical and chemical industries, as it provides insight into the structural parameters of crystals during growth, which is crucial for optimization and control.
Gautier Hypolite, Jérôme Vicente, Hugo Taligrot, Philippe Moulin. X-ray tomography crystal characterization: Growth monitoring. Journal of Crystal Growth, 2023, 612, pp.127187. ⟨10.1016/j.jcrysgro.2023.127187⟩. ⟨hal-04071090⟩
30 janvier
- Filière intensifiée de traitement d’effluents industriels : étude du couplage de procédés membranaires et d’oxydation en voie humide / Soutenance de thèse Emilie GOUT
Doctorante : Emilie GOUT
Date : lundi 30 janvier à 10h00 dans l’amphithéâtre du CEREGE (Technopôle Environnement Arbois - Méditerranée)
Résumé : Les procédés membranaires sont reconnus dans l’industrie pour réduire les volumes d’effluents et générer un perméat de très bonne qualité. Les concentrats générés, hautement concentrés en polluants organiques, pourraient être traités par oxydation en voie humide (OVH). La filière de traitement couplant procédés membranaires à l’échelle industrielle et OVH à l’échelle laboratoire est développée et étudiée dans cette thèse pour traiter six effluents stratégiques et envisager un rejet vers l’environnement. Quatre conditions opératoires pour l’OVH issues d’une campagne préliminaire utilisant un plan d’expériences sur les concentrats de lixiviats ont été utilisées pour cribler les performances de l’OVH sur les autres effluents. Le suivi des performances par analyse du COT, de la DCO et de la fluorimétrie s’est montré complémentaire car différents comportements entre les effluents ont été mis en évidence. Les meilleurs abattements (jusqu’à 98 et 99 % pour le COT et la DCO respectivement) sont généralement obtenus à la plus grande température, indépendamment de la pression totale, avec de plus grandes quantités dégradées pour les effluents à forte DCO. De plus, la période de chauffe avant l’injection de l’oxydant impacte cet abattement de la matière organique en fonction des effluents. Des hypothèses sur la dégradation de la matière organique lors de l’OVH ont pu être proposées par fluorimétrie. La filière de traitement couplant les procédés membranaires et l’OVH présente un fort potentiel car il a été montré qu’un rejet vers l’environnement est possible pour la plupart des effluents étudiés.
Jury
Caroline ANDRIANTSIFERANA Rapporteuse
Maître de Conférences – Université Toulouse III
Catherine CHARCOSSET Présidente du jury
Directrice de Recherches – Université Lyon 1
Sylvain DURÉCU Examinateur
Docteur – Séché Environnement
Marc HÉRAN Rapporteur
Professeur des Universités – Université de Montpellier
Mathias MONNOT Co-directeur de thèse
Maître de Conférences – Aix Marseille Université
Philippe MOULIN Directeur de thèse
Professeur des Universités – Aix Marseille Université
Pierre VANLOOT Invité
Maître de Conférences – Aix Marseille Université
13 décembre
- Développement d’une unité hybride couplant la désulfuration des gaz d’échappement et le traitement des effluents aqueux pour la marine marchande / Soutenance de thèse Maryse DROUIN
Doctorante : Maryse DROUIN
Date : Mardi 13 décembre à 9h45 dans l’amphithéâtre du CEREGE (Technopole Environnement Arbois - Méditerranée)
Résumé : Suite à la réduction des émissions de composés soufrés en pleine mer de 85 %, des unités de traitement de gaz d’échappement hybrides ont été installées sur les navires de commerce. Ces unités combinent le traitement du gaz par absorption et l’épuration des effluents liquides par filtration membranaire. La mise en place de ces procédés embarqués est récente (2020) et les contraintes d’opérabilités sont nombreuses notamment en ce qui concerne le fonctionnement des unités membranaires. Dans ce contexte, la thèse a pour principaux objectifs : (i) d’étudier le transfert de matière au travers des membranes (ii) d’optimiser les conditions opératoires et la gestion des procédés afin de (iii) fiabiliser le couplage des procédés en vue d’une utilisation continue. Pour cela, une caractérisation des différentes qualités d’eau à traiter obtenue après le lavage des gaz d’échappement a été réalisée. Puis le comportement et les performances des membranes multitubulaires, en carbure de silicium (SiC) et en oxyde de zircone (ZrO2), ont été étudiés à l’échelle semi-industrielle pour la filtration d’effluents réels. Les résultats obtenus ont permis pour chaque membrane de préconiser des paramètres de fonctionnement stable et de simplifier la gestion des unités embarquées. Les paramètres recommandés pour les membranes SiC, ont été validés en conditions réelles sur l’un des navires au cours de la navigation. Lors de cette étude, les résultats ont également mis en avant mettant une robustesse et une flexibilité de l’unité membranaire vis-à-vis du procédé global de désulfuration. Le traitement des eaux permet une navigation plus respectueuse de l’environnement avec la production d’un perméat exempt de matières en suspension et moins concentré en ions métalliques et en hydrocarbures. De plus, les paramètres préconisés ont permis une réduction de 70 % du volume de concentrat, dont le stockage est aujourd’hui la principale limitation à l’utilisation continue des unités en Closed Loop.
Jury
Claire FARGUES / Rapporteur / Maitre de conférences : Université Paris Saclay Julie MENDRET / Rapporteur / Maitre de conférences : Université de Montpellier Emilie CARRETIER / Examinateur / Professeur des Universités : Aix Marseille Université Rémy GHIDOSSI / Président du jury / Professeur des Universités : Université de Bordeaux Philippe MOULIN / Directeur de thèse / Professeur des Universités : Aix Marseille Université Samy NASSER / Invité / Senior Manager : CMAships pour le groupe CMA CGM