L'Equipe Procédés Membranaires (EPM) consacre ses activités à des
recherches appliquées et à leur transfert vers le monde industriel où
interfèrent les exigences scientifiques, économiques et celles de la
confidentialité des sujets traités.
Les activités de l'équipe sont en forte progression et couvrent un large spectre : depuis la conception de nouvelles membranes et modules jusqu'au développement et à l'installation de nouveaux procédés membranaires industriels. L'objectif principal de l'équipe Procédés Membranaires est d'améliorer l'efficacité de ces procédés limitée par le colmatage et le coût de mise en œuvre, tout en apportant des solutions innovantes dans le traitement d’effluents spécifiques et la purification de composés de haute valeur ajoutée.
Toute évolution des procédés ne peut reposer que sur la connaissance approfondie des problématiques qui les génèrent et des choix qui peuvent en découler. Les problématiques scientifiques évoquées sont complexes et multiples. Dans ce cadre, les activités de recherche sont pour la majorité en partenariat avec un industriel dans le cadre d’un contrat de collaboration de recherche. A partir d’une idée développée au laboratoire ou d’une problématique industrielle), il s’agit ici de travailler en partenariat industriels-EPM dans un cadre réaliste de variables opératoires.
Projets en cours
L'équipe développe de nombreux projets de recherche nationaux et internationaux financés par différents organismes ou partenariats industriels.
L’optimisation des procédés membranaires passe par une meilleure compréhension des mécanismes mis en jeu. Les activités de l’EPM se divisent en 6 axes de recherche inter-agissant entre eux :
- Bioréacteur à membranes (Benoit Marrot) - Caractérisation de membranes et Eau potable (Yvan Wyart) - Industrialisation de procédés et CFD (Philippe Moulin)
- Intensification de procédés (Mathias Monnot)
- Propriétés de Transport et Métrologie (Jean Philippe Bonnet) - Traitement des effluents (Emilie Carretier) - Traitement de l'eau de mer et aquaculture (Clémence Cordier)
Pour plus d'information, cliquer sur les images ci-dessous !
Plate forme de 20 pilotes de filtration 1 pilote de perméation gazeuse 2 pilote de pervaporation 1 OI haute pression, NF, 3 pilotes de screening 9 pilotes de MF-UF 1 BRM 1 station de production d'eau potable 20m3.J-1 1 unité de purification d'eau 240m3.J-1 1 BRM industriel 1 pilote multi scales MF-UF
Dernières Publications de l'équipe
2023
J. Yang, A. Mouilleron, M. Monnot, C. Cordier, P. Moulin. Ultrafiltration for the biosecurity of fish production: The case of a sturgeon nursery. Aquacultural Engineering, 2023, 103, pp.102366. ⟨10.1016/j.aquaeng.2023.102366⟩. ⟨hal-04202096⟩ Plus de détails...
J. Yang, A. Mouilleron, M. Monnot, C. Cordier, P. Moulin. Ultrafiltration for the biosecurity of fish production: The case of a sturgeon nursery. Aquacultural Engineering, 2023, 103, pp.102366. ⟨10.1016/j.aquaeng.2023.102366⟩. ⟨hal-04202096⟩
Emilie Gout, Fatimatou Toure Lo, Mathias Monnot, Olivier Boutin, Pierre Vanloot, et al.. Coupling membrane processes with wet air oxidation for the remediation of industrial effluents. Chemical Engineering Journal, 2023, 472, pp.144937. ⟨10.1016/j.cej.2023.144937⟩. ⟨hal-04202142⟩ Plus de détails...
Emilie Gout, Fatimatou Toure Lo, Mathias Monnot, Olivier Boutin, Pierre Vanloot, et al.. Coupling membrane processes with wet air oxidation for the remediation of industrial effluents. Chemical Engineering Journal, 2023, 472, pp.144937. ⟨10.1016/j.cej.2023.144937⟩. ⟨hal-04202142⟩
Adrien Magne, Emilie Carretier, Lilivet Ubiera Ruiz, Thomas Clair, Morgane Le Hir, et al.. Recovery of Homogeneous Platinoid Catalysts from Pharmaceutical Media: Review on the Existing Treatments and the Perspectives of Membrane Processes. Membranes, 2023, 13 (8), pp.738. ⟨10.3390/membranes13080738⟩. ⟨hal-04202121⟩ Plus de détails...
Catalyst recovery is a major challenge for reaching the objectives of green chemistry for industry. Indeed, catalysts enable quick and selective syntheses with high reaction yields. This is especially the case for homogeneous platinoid catalysts which are almost indispensable for cross-coupling reactions often used by the pharmaceutical industry. However, they are based on scarce, expensive, and toxic resources. In addition, they are quite sensitive and degrade over time at the end of the reaction. Once degraded, their regeneration is complex and hazardous to implement. Working on their recovery could lead to highly effective catalytic chemistries while limiting the environmental and economic impacts of their one-time uses. This review aims to describe and compare conventional processes for metal removal while discussing their advantages and drawbacks considering the objective of homogeneous catalyst recovery. Most of them lead to difficulty recycling active catalysts due to their ability to only treat metal ions or to chelate catalysts without the possibility to reverse the mechanism. However, membrane processes seem to offer some perspectives with limiting degradations. While membranes are not systematically the best option for recycling homogeneous catalysts, current development might help improve the separation between pharmaceutical active ingredients and catalysts and enable their recycling.
Adrien Magne, Emilie Carretier, Lilivet Ubiera Ruiz, Thomas Clair, Morgane Le Hir, et al.. Recovery of Homogeneous Platinoid Catalysts from Pharmaceutical Media: Review on the Existing Treatments and the Perspectives of Membrane Processes. Membranes, 2023, 13 (8), pp.738. ⟨10.3390/membranes13080738⟩. ⟨hal-04202121⟩
In this study, we present a new approach for the growth monitoring of crystals using micro X-ray computed tomography (XCT). This technique allows us to track the evolution of the total crystal volume and surface in real time, and to calculate the growth rate. By segmenting the 3D XCT images using a robust method, we are able to extract detailed information about the crystals, such as their number, volume, diameter, and sphericity. Additionally, we determine the growth rates of individual crystal faces. Our method has the potential to greatly benefit the pharmaceutical and chemical industries, as it provides insight into the structural parameters of crystals during growth, which is crucial for optimization and control.
Gautier Hypolite, Jérôme Vicente, Hugo Taligrot, Philippe Moulin. X-ray tomography crystal characterization: Growth monitoring. Journal of Crystal Growth, 2023, 612, pp.127187. ⟨10.1016/j.jcrysgro.2023.127187⟩. ⟨hal-04071090⟩
Gautier Hypolite, Olivier Boutin, Sandrine Del Sole, Jean-François Cloarec, Jean-Henry Ferrasse. Evaluation of a water network’s energy potential in dynamic operation. Energy, 2023, 271, pp.127066. ⟨10.1016/j.energy.2023.127066⟩. ⟨hal-04504325⟩ Plus de détails...
To address the challenges of the energy transition, reducing consumption and optimizing energy production is crucial for all industrial sectors. In the future, water issues will be as important as energy issues, making the optimization of water supply systems critical. The water sector represents large energy consumption for pumping and heating. In regards to this consumption, water systems have a great potential for energy recovery through hydroelectric production or thermal energy recovery. This article aims to quantify the energy potential of water supply systems, which has not been well understood until now. The energy potential of these systems encompasses hydropower recovery and thermal potential, including heat recovery and cold recovery. For that, a method is developed to estimate this potential, including the recoverable power, its location, and its temporal variation. The method can be used for hydroelectricity production, as well as for heat and cold recovery. For a whole year, the results indicate a hydraulic potential of 15 MWh.km−1.year−1, and respectively 1650 MWh.km−1 .year−1 for heat recovery and 766 MWh.km−1.year−1 for cold recovery.
Gautier Hypolite, Olivier Boutin, Sandrine Del Sole, Jean-François Cloarec, Jean-Henry Ferrasse. Evaluation of a water network’s energy potential in dynamic operation. Energy, 2023, 271, pp.127066. ⟨10.1016/j.energy.2023.127066⟩. ⟨hal-04504325⟩
25 juin 2024
- Intensification de filière industrielles de traitement des eaux et des effluents par procédés membranaires : Vers une utilisation plus sûre et plus durable de l'eau / Soutenance HDR Mathias Monnot
Date et lieu : le mardi 25 juin à 9h15, salle de projection du Forum à l'Arbois (Technopôle de l'Arbois, avenue Louis Philibert à Aix-en-Provence)
Résumé : La mise en œuvre des procédés membranaires pour le traitement des eaux et des effluents a connu un essor considérable ces dernières années grâce à leur potentiel d’intensification des filières industrielles. Par rapport aux procédés conventionnels de séparation, les procédés membranaires permettent généralement une augmentation de la productivité et de la sélectivité, une réduction de l’emprise au sol, une réduction de la consommation en produits chimiques, et même souvent une réduction des coûts d’investissement et de fonctionnement. Ils permettent aussi des séparations sur une large gamme de tailles, du micromètre au nanomètre. Dans ce contexte d’intensification et en considérant les enjeux actuels majeurs de la protection de l’environnement et de la ressource en eau, il s’agit d’étudier l’efficacité des procédés membranaires dans les domaines de la production d’eau potable, de la production d’eau pour des applications industrielles, du traitement des eaux usées domestiques et des effluents industriels. Les travaux présentés dans ce manuscrit d’Habilitation à Diriger les Recherches visent donc à améliorer l'efficacité et la durabilité des filières de traitement des eaux et des effluents, en se concentrant sur la réduction de l'impact environnemental pour diverses applications et sur l'amélioration de la qualité de l’eau en particulier vis-à-vis de polluants microbiologiques et microplastiques. Dans ce cadre, les résultats obtenus ont ainsi contribué à améliorer l’état des connaissances scientifiques au sujet de la faisabilité des procédés membranaires pour de nouvelles applications et de l’optimisation de leur fonctionnement à échelle semi-industrielle voire industrielle. Le développement de techniques analytiques poussées au service du Génie des Procédés est un réel apport à cette intensification. Des perspectives de recherche pour une utilisation plus sûre et plus durable de l’eau grâce aux procédés membranaires sont également présentées.
Mots-clés : procédés membranaires, intensification, génie des procédés, traitement de l'eau, eau potable, eaux usées, effluent industriel, polluants émergents
Jean-Philippe CROUÉ Rapporteur / Professeur des Université – Université de Poitiers
Julie MENDRET Rapporteure / Maître de Conférences HDR – Université de Montpellier
Christel CAUSSERAND Examinatrice / Professeure des Universités – Université de Toulouse 3
Alberto FIGOLI Examinateur / Directeur de Recherche – Université de Calabre, Italie
Pascal WONG WAH CHUNG Examinateur / Professeur des Universités – Aix-Marseille Université
Philippe MOULIN Tuteur d’HDR / Professeur des Universités – Aix-Marseille Université
Sylvain DURÉCU Invité / Directeur de la R&D chez Séché Environnement
19 juin 2024
- Récupération de catalyseurs homogènes au palladium issus de milieux pharmaceutiques par procédés membranaires / Soutenance de thèse Adrien Magne
Doctorant : Adrien MAGNE
Date et lieu : Mercredi 19 Juin à 9h, Amphithéâtre du CEREGE, Technopôle de l'Arbois-Méditerranée, 13545 Aix-en-Provence
Résumé : Les catalyseurs homogènes au palladium permettent de réaliser des réactions chimiques aux rendements et sélectivités élevés les rendant ainsi indispensables en pharmaceutique. Cependant, il s’agit de composés toxiques sensibles à la dégradation. Isoler ces catalyseurs en fin de synthèse sans perte d’activité mènerait donc à des gains environnementaux et économiques majeurs. Cette thèse, appliquée à un cas concret du groupe SANOFI, doit répondre à deux problématiques : (i) une matrice de solvants organiques qui a orienté l’étude vers les matériaux céramiques, plus résistants et permettant une industrialisation, et surtout (ii) un catalyseur et un intermédiaire pharmaceutique de tailles similaires, respectivement 701,9 et 568,5 g.mol-1. La nanofiltration de solvants organiques offre ainsi des perspectives intéressantes. Des catalyseurs de substitution plus lourds et/ou plus encombrés ont été sélectionnés et synthétisés, et des membranes de différents seuils de coupure ont été testées. De plus, de nombreuses méthodes analytiques ont été développées pour quantifier les performances du procédé mais également évaluer l’activité du catalyseur au cours de la séparation. Si la séparation n’est pas possible avec des membranes 1 kDa, l'intérêt d’augmenter la taille des composés a été confirmée avec des rétentions en palladium qui augmentent de 13 % (référence) à 18 % (substituant lourd). Les membranes de nanofiltration plus fines ont conduit à des résultats de rétentions légèrement supérieurs mais la caractérisation de celles-ci a conclu que les seuils de coupure étaient similaires, soulevant ainsi la problématique de la définition du seuil de coupure par différents fabricants.
Mots clés : nanofiltration de solvants organiques, membranes céramiques, récupération de catalyseurs, industrie pharmaceutique
Jury :
Murielle RABILLER-BAUDRY, Professeure des Universités à l'Université de Rennes - Rapporteure
Marwen MOUSSA, Maitre de Conférences à INRAE-AgroParisTech - Rapporteur
Didier NUEL, Maitre de Conférences à Centrale Méditerranée - Examinateur
Philippe KNAUTH, Professeur des Universités à AMU - Examinateur
Philippe MOULIN, Professeur des Universités à AMU - Directeur de thèse
Emilie CARRETIER, Professeure des Universités à AMU - Co-directrice de thèse
Thomas CLAIR, Membre invité (Sanofi Winthrop Industrie)
Lilivet Aracelis UBIERA RUIZ, Membre invitée (Sanofi Winthrop Industrie)