2 grands domaines thématiques (2 sites), 6 équipes de recherche, 3 axes transverses
L'originalité du M2P2 réside dans ses thèmes de recherche dans les domaines de la Mécanique des Fluides Numérique et du Génie des Procédés. La recherche en mécanique et modélisation est associée à un fort développement méthodologique autour de codes de calcul pour la simulation d'écoulements naturels et industriels. Dans le domaine du génie des procédés, la recherche concerne le développement de procédés innovants ainsi que l'étude des verrous mis en jeu dans ces procédés dans le cadre d'une forte activité contractuelle.
3 axes transverses complètent cette structuration matricielle pour explorer de nouvelles pistes de recherche, sur des projets innovants et actuels, en profitant des compétences inter-équipes.
Elena Alekseenko, A.A. Sukhinov, B. Roux. Modeling of multi-fractional suspended particle pathways in a shallow water basin under influence of strong winds. Regional Studies in Marine Science, 2024, 73, pp.103477. ⟨10.1016/j.rsma.2024.103477⟩. ⟨hal-04515082⟩ Plus de détails...
In this study, we investigate the complex dynamics of multi-fractional suspended particle transport in a shallow water basin subjected to strong wind conditions. Our research focuses on understanding the interplay between wind-induced advection and particle settlement, and its implications for sediment redistribution. Through our analysis, we reveal the distinct behaviors of different sediment fractions. Clay particles, constituting the lowest fraction in sediment cores, remain suspended throughout the simulation due to their low settlement velocity, with relatively stable concentrations. Conversely, the dominant fraction, medium silt, is suspended during intense wind events but quickly settles to the bed due to its higher settling velocity. Wind stress exceeding 0.05 Pa triggers particulate matter erosion, leading to its presence in the water column. Additionally, we explore the 2D distribution of sediment characteristics, including thickness, dry density, and mud fraction, to identify areas prone to erosion and deposition. Our findings demonstrate that coastal areas of the Taganrog Bay experienced significant erosion following strong wind events, exhibiting the thinnest sediment thickness and the highest dry bulk density. Deposition areas, characterized by thicker sediment layers and lower dry density, were often found in proximity to erosion zones, indicating the influence of particle resuspension and settlement processes. Furthermore, we analyze the implications of our findings on the vulnerability of specific regions to erosion and deposition. The central part of the sea contains moderately thicker sediment layers with a moderately high mud fraction, representing a zone of fine sediment accumulation. These fine sediments, including fine silt and clay, remain suspended for longer durations and are redistributed over greater distances by currents. Overall, our study provides valuable understanding into the multi-fractional suspended particle pathways and their interaction with strong winds in shallow water basins. The results contribute to a better understanding of sediment dynamics, which has implications for coastal management, environmental monitoring, and the preservation of benthic ecosystems.
Elena Alekseenko, A.A. Sukhinov, B. Roux. Modeling of multi-fractional suspended particle pathways in a shallow water basin under influence of strong winds. Regional Studies in Marine Science, 2024, 73, pp.103477. ⟨10.1016/j.rsma.2024.103477⟩. ⟨hal-04515082⟩
Seyed Ali Hosseini, Pierre Boivin, Dominique Thévenin, Ilya Karlin. Lattice Boltzmann methods for combustion applications. Progress in Energy and Combustion Science, 2024, 102, pp.101140. ⟨10.1016/j.pecs.2023.101140⟩. ⟨hal-04412786⟩ Plus de détails...
The lattice Boltzmann method, after close to thirty years of presence in computational fluid dynamics has turned into a versatile, efficient and quite popular numerical tool for fluid flow simulations. The lattice Boltzmann method owes its popularity in the past decade to its efficiency, low numerical dissipation and simplicity of its algorithm. Progress in recent years has opened the door for yet another very challenging area of application: Combustion simulations. Combustion is known to be a challenge for numerical tools due to, among many others, the large number of variables and scales both in time and space, leading to a stiff multi-scale problem. In the present work we present a comprehensive overview of models and strategies developed in the past years to model combustion with the lattice Boltzmann method and discuss some of the most recent applications, remaining challenges and prospects.
Seyed Ali Hosseini, Pierre Boivin, Dominique Thévenin, Ilya Karlin. Lattice Boltzmann methods for combustion applications. Progress in Energy and Combustion Science, 2024, 102, pp.101140. ⟨10.1016/j.pecs.2023.101140⟩. ⟨hal-04412786⟩
Journal: Progress in Energy and Combustion Science
Franck Corset, Mitra Fouladirad, Christian Paroissin. Imperfect and worse than old maintenances for a gamma degradation process. Applied Stochastic Models in Business and Industry, 2024, ENBIS 2022, 40 (3), pp.620-639. ⟨10.1002/asmb.2849⟩. ⟨hal-04462980⟩ Plus de détails...
This article considers a condition‐based maintenance for a system subject to deterioration. The deterioration is modeled by a non‐homogeneous gamma process, more precisely the gamma process and the preventive maintenance are imperfect or worse than old. The corrective maintenance actions are as good as new. The maintenance efficiency or non‐efficiency parameters as well as the deterioration parameters are considered to be unknown. The monitoring data under consideration give indirect information on the maintenance parameters. Therefore, an expected maximum algorithm is applied for parameter estimation.
Franck Corset, Mitra Fouladirad, Christian Paroissin. Imperfect and worse than old maintenances for a gamma degradation process. Applied Stochastic Models in Business and Industry, 2024, ENBIS 2022, 40 (3), pp.620-639. ⟨10.1002/asmb.2849⟩. ⟨hal-04462980⟩
Journal: Applied Stochastic Models in Business and Industry
Uwe Ehrenstein. Generalization to differential–algebraic equations of Lyapunov–Schmidt type reduction at Hopf bifurcations. Communications in Nonlinear Science and Numerical Simulation, 2024, 131, pp.107833. ⟨10.1016/j.cnsns.2024.107833⟩. ⟨hal-04408097⟩ Plus de détails...
The Lyapunov-Schmidt procedure, a well-known and powerful tool for the local reduction of nonlinear systems at bifurcation points or for ordinary differential equations (ODEs) at Hopf bifurcations, is extended to the context of strangeness-free differential-algebraic equations (DAEs), by generalizing the comprehensive presentation of the method for ODEs provided in the classical textbook by Golubitsky and Schaeffer [Applied mathematical sciences, {\bf 51}, Springer (1985)]. The appropriate setting in the context of DAEs at Hopf bifurcations is first detailed, introducing suitable operators and addressing the question of appropriate numerical algorithms for their construction as well. The different steps of the reduction procedure are carefully reinterpreted in the light of the DAE context and detailed formulas are provided for systematic and rational construction of the bifurcating local periodic solution, whose stability is shown, likely to the ODE context, to be predicted by the reduced equations. As an illustrative example, a classical DAE model for an electric power system is considered, exhibiting both supercritical and subcritical Hopf bifurcations, demonstrating the prediction capability of the reduced system with regard to the global dynamics.
Uwe Ehrenstein. Generalization to differential–algebraic equations of Lyapunov–Schmidt type reduction at Hopf bifurcations. Communications in Nonlinear Science and Numerical Simulation, 2024, 131, pp.107833. ⟨10.1016/j.cnsns.2024.107833⟩. ⟨hal-04408097⟩
Journal: Communications in Nonlinear Science and Numerical Simulation
Mostafa Taha, Song Zhao, Aymeric Lamorlette, Jean-Louis Consalvi, Pierre Boivin. Large eddy simulation of fire-induced flows using Lattice-Boltzmann methods. International Journal of Thermal Sciences, 2024, 197, pp.108801. ⟨10.1016/j.ijthermalsci.2023.108801⟩. ⟨hal-04338538⟩ Plus de détails...
Large-eddy simulations (LES) of the near-field region of large-scale fire plumes are performed for the first time with a pressure-based Lattice Boltzmann method (LBM) with low-Mach number approximation. Two scenarios are considered: the large-scale non-reactive helium plume and the 1 m methane pool fire, both investigated experimentally at Sandia. In the second scenario, a simplified modeling of the combustion and radiation processes is introduced involving a one-step irreversible reaction eddydissipation concept-based combustion model and a radiant fraction model, respectively. In both scenarios, a quantitative agreement is observed with the experimental data and model predictions are consistent with previouslypublished numerical studies. Our simulations demonstrate the computational efficiency of the proposed LBM solver to tackle fire-induced flows, suggesting that LBMs are a good alternative candidate for the modeling of fire-related problems.
Mostafa Taha, Song Zhao, Aymeric Lamorlette, Jean-Louis Consalvi, Pierre Boivin. Large eddy simulation of fire-induced flows using Lattice-Boltzmann methods. International Journal of Thermal Sciences, 2024, 197, pp.108801. ⟨10.1016/j.ijthermalsci.2023.108801⟩. ⟨hal-04338538⟩
Journal: International Journal of Thermal Sciences
31 octobre 2024
- Lattice Boltzmann method based large eddy simulations of wind farm wakes under the influence of atmospheric thermal stability / Ziwen Wang PhD defense
Doctorante : Ziwen Wang
Date : on October 31st, from 9:00 AM to 12:00 PM ; amphi N°3 - Centrale Méditerranée
Abstract : Wind energy experienced fast growth in the past two decades due to its inherent cleanness and low economic cost. Much attention has been devoted to the wind turbine/farm to access the full potential of wind energy. Wind turbines extract energy from airflow, resulting in a high turbulence and low-velocity wake flow. The downstream wind turbines in the wake suffer from high load and reduce power production. Additionally, wind turbine aerodynamics are highly influenced by the characteristics of the atmospheric boundary layer (ABL). Therefore, a thorough study of the interaction between wind farms and ABL is crucial for the design of wind farms and the optimization of wind farm performance.
Numerical simulations offer advantages in quantitative analysis of interactions between wind farms and ABL compared to experimental studies. While conventional high-fidelity simulations provide valuable insight into wind farm aerodynamics, their high computational cost limits their industrial application. As an alternative, the efficient lattice Boltzmann method (LBM) offers a promising solution for balancing computational demands whilst enabling accurate aerodynamic analysis. In this study, LBM was integrated with Large Eddy Simulation (LES) to investigate the wake flow of wind turbines and wind farms. The wind turbines were parameterized using the actuator line model. The ground momentum and the thermal flux within the ABL are represented using the Monin-Obukhov similarity theory. A review of different inflow turbulence generation methods in wind energy was provided. The inflow turbulence was constructed using the synthetic eddy method (SEM) as an alternative to the widely used precursor method.
A comprehensive validation of the numerical model was first carried out, including the integration of the wind turbine actuator line model into the LBM-LES solver, the simulation of individual wind turbine wake flow under the influence of atmosphere stability, and the wind farm simulation under neutral boundary layer (NBL) conditions. The results showed good agreement with reference data. The individual wake flow characteristics, such as velocity deficit shape and wake flow recovery rate, are highly influenced by thermal stability. The wake flow inside a wind farm stabilizes after an initial adjustment in the uniform temperature condition.
Onshore and offshore wind farm wakes under the influence of ABL thermal stability were further studied. For the onshore wind farm, the effects of stable and convective conditions were analyzed in detail. The wake behind the first 2 rows of the wind farm recovers faster in the convective condition due to the high ambient turbulence. However, the velocity and the turbulence intensity of the stabilized wake are higher in the stable condition. This is attributed to the larger velocity gradient and increased shear stress in the stable environment, which enhances the vertical kinetic energy exchange. The thermal stability effect can be differentiated between the indirect and direct effects. Indirectly, thermal stability influences ambient turbulence magnitude and velocity gradient, leading to varying levels of turbulence production and energy exchange. Directly, buoyancy forces primarily impact the wake flow behind the first two rows of turbines. Beyond this point, turbine rotation mixes high and low-temperature flows, rendering the flow relatively neutral deeper inside the wind farm. In addition, the performance of two typical analytical models was analyzed by comparison with the current LES results. The results highlight the importance of considering turbulence intensity in analytical models. Current empirical models for wind turbine-induced turbulence do not adequately represent variations induced by thermal stability.
As for the offshore wind farm, simulations were conducted with constant sea surface roughness. The wake flow stabilizes after the second wind turbine, with a slower wake recovery due to the lower inflow turbulence intensity compared to the onshore wind farm. A comparison was further performed between the results of the analytical models and the LES. The PARK model overpredicts the wake flow velocity behind the first turbine while underpredicting the near wake velocity and overpredicting the far wake velocity from the second turbine onwards. This is attributed to the low wake recovery rate predictions. The NPA model underpredicts wake flow behind the first turbine but performs well in predicting the wake flow at equilibrium, with overprediction in front of each row of turbines due to the model not accounting for the blockage effect.
These findings offer valuable insights into the aerodynamic and thermal dynamics within large wind farms, both onshore and offshore, contributing to the optimization of wind energy production.
Jury
Michel VISONNEAU - Rapporteur Directeur de recherche CNRS
Guillaume BALARAC - Rapporteur Professeur des universités Université de Grenoble
Sylvain GUILLOU - Examinateur Professeur des universités Université de Caen
Mickael GRONDEAU - Examinateur Maître de conférences Université de Caen
Frédéric BLONDEL - Examinateur Ingénieur de recherche IFPEN
Sandrine AUBRUN - Présidente du Jury Professeure Ecole Centrale de Nantes
Pierre SAGAUT - Directeur de thèse Professeur des universités Aix-Marseille Université
Jérôme JACOB - Membre invité Ingénieur de recherche CNRS
24 septembre 2024
- Supercritical technology applied to the development of innovative intravitreal sustained-release drug delivery systems / Matthieu Schneider PhD defense
Doctorant : Matthieu SCHNEIDER
Date : le 24 septembre à 9h00, amphithéâtre du CEREGE, technopole de l'Arbois
Abstract : Age-related macular degeneration (AMD), manifested by the appearance of a dark spot in the center of the vision, has become a significant public health issue, with the number of patients set to rise over the coming decades. Since 2006, the pharmaceutical industry has introduced therapies with monthly intravitreal injections of anti-VEGF (vascular endothelial growth factor) antibodies to mitigate its development. Designing an intravitreal implant with antibody release controlled over twelve weeks has been proposed to simplify therapy management. Antibodies are thermally, chemically, and biologically sensitive therapeutic proteins. This study demonstrates the potential of the Sequential Dispersion Particles from Gas Saturated Solution (SD-PGSS) process for encapsulating sensitive active ingredients. The SD-PGSS process enables work to be carried out at moderate temperatures (38 °C) and without solvent. The study focused on the optimization of operating conditions through the investigation of polyesters (Polycaprolactone PCL, poly(Lactide-co-Glycolide) PLGA, and a polyether (Poly(Ethylene Glycol) PEG) biocompatible in the presence of supercritical CO2. Two operating conditions were selected: 38 °C/25 MPa for PCL and the PCL/PLGA blend (1:1 w/w) and 45 °C/25 MPa for PCL alone and the PCL/PEG blend (1:1 w/w). The implementation of the SD-PGSS process resulted in a repeatable process with high yields (80 - 95%). The study of two model molecules, lutein, a small hydrophobic molecule of therapeutic interest studied in an oral administration context, and bovine serum albumin, a hydrophilic protein studied in an intravitreal release scenario, demonstrated the repeatability of the process, the homogeneity of the final product, and the possibility of modulating the release in vitro. The antibody study demonstrated low activity maintenance and prolonged release for up to 8 weeks, leading to a prototype with compatible dimensions for ophthalmic use.
Jury
Géraldine PIEL Rapporteuse / Professeure, Université de Liège, Belgique
Ernesto DI MAIO Rapporteur / Professeur, Université de Naples-Federico II, Italie
Martial SAUCEAU Examinateur / Maître-assistant, Ecole des Mines d’Albi-Carmaux
John CONRATH Président du jury / Professeur - Chirurgien, Clinique Monticelli
Elisabeth BADENS Directrice de thèse / Professeure, Aix-Marseille Université
Yasmine MASMOUDI Co-directrice de thèse / Maître de conférences , Aix-Marseille Université
Céline OLMIERE Membre invitée / Directrice scientifique, Théa Open Innovation
26 juin 2024
- Hydrodynamique et parois perméables: instabilités, filtration, méthodes numériques - Soutenance HDR Denis Martinand
Date et lieu : le mercredi 26 juin à 10 heures, en amphi 3 de Centrale Méditerranée
Résumé : Dans de nombreux problèmes de mécanique des fluides, la nature des conditions aux limites a une telle influence qu'elles en deviennent plus importantes que les équations dynamiques elles-mêmes pour comprendre et prévoir les écoulements en jeu. Depuis quinze ans au M2P2, en suivant cette idée, je m'intéresse aux couplages entre hydrodynamique et transferts à travers des parois perméables et semi-perméables, de façon analytique et numérique.
Cette recherche est motivée d'une part par l'amélioration des procédés de séparation membranaire (de filtration), où l'accumulation de matière retenue dégrade les performances. Les techniques de filtration dynamique cherchent à remélanger cette matière par le biais d'instabilités et d'écoulements turbulents et leur efficacité repose, entre autre, sur une bonne compréhension et modélisation des couplages entre les phénomènes de transferts membranaires et l'hydrodynamique. L'étude de ces couplages présente d'autre part un intérêt fondamental et théorique quant aux mécanismes spécifiques d'instabilité et de mélange ou aux méthodes numériques adaptées.
J'ai étudié ces couplages dans une configuration de type Taylor-Couette, où les instabilités centrifuges sont bien modélisées et maîtrisées. Cette cellule de Taylor-Couette présente la particularité d'avoir un ou deux cylindre(s) perméable(s), laissant passer le solvant et retenant éventuellement un soluté, et dont l'influence sur l'écoulement est décrit par des conditions aux limites spécifiques. La présentation détaillera deux aspects de ces couplages. Une première question concerne le développement des instabilités centrifuges, alors que leur dynamique évolue à mesure que le fluide s'écoule vers l'aval de la cellule et est extrait à travers la membrane. Comprendre et prévoir l'apparition des instabilités peut se faire par leur modélisation en modes globaux non-linéaires, mais les simulations numériques directes montrent aussi une dynamique plus complexe. Une deuxième question concerne le couplage par la pression osmotique entre une couche limite de concentration formée par la filtration d'un soluté et les instabilités centrifuges. On observe, à la fois par les analyses de stabilité et par des simulations numériques directes, que ce couplage promeut les instabilités hydrodynamiques et permet d'augmenter le flux trans-membranaire.
Jury
Dr. Laurette TUCKERMAN, CNRS-Sorbonne Université, Rapporteure
Pr. Uwe HARLANDER, Brandenburgische Technische Universität Cottbus, Rapporteur
Pr. François GALLAIRE, Ecole Polytechnique Fédérale de Lausanne, Rapporteur
Pr. Eric CLIMENT, INP Toulouse, Examinateur
Pr. Richard M. LUEPTOW, Northwestern University, Examinateur
Dr. Eric SERRE, CNRS-Aix-Marseille Université, Examinateur
Pr. Marc MEDALE, Aix-Marseille Université, Tuteur
25 juin 2024
- Intensification de filière industrielles de traitement des eaux et des effluents par procédés membranaires : Vers une utilisation plus sûre et plus durable de l'eau / Soutenance HDR Mathias Monnot
Date et lieu : le mardi 25 juin à 9h15, salle de projection du Forum à l'Arbois (Technopôle de l'Arbois, avenue Louis Philibert à Aix-en-Provence)
Résumé : La mise en œuvre des procédés membranaires pour le traitement des eaux et des effluents a connu un essor considérable ces dernières années grâce à leur potentiel d’intensification des filières industrielles. Par rapport aux procédés conventionnels de séparation, les procédés membranaires permettent généralement une augmentation de la productivité et de la sélectivité, une réduction de l’emprise au sol, une réduction de la consommation en produits chimiques, et même souvent une réduction des coûts d’investissement et de fonctionnement. Ils permettent aussi des séparations sur une large gamme de tailles, du micromètre au nanomètre. Dans ce contexte d’intensification et en considérant les enjeux actuels majeurs de la protection de l’environnement et de la ressource en eau, il s’agit d’étudier l’efficacité des procédés membranaires dans les domaines de la production d’eau potable, de la production d’eau pour des applications industrielles, du traitement des eaux usées domestiques et des effluents industriels. Les travaux présentés dans ce manuscrit d’Habilitation à Diriger les Recherches visent donc à améliorer l'efficacité et la durabilité des filières de traitement des eaux et des effluents, en se concentrant sur la réduction de l'impact environnemental pour diverses applications et sur l'amélioration de la qualité de l’eau en particulier vis-à-vis de polluants microbiologiques et microplastiques. Dans ce cadre, les résultats obtenus ont ainsi contribué à améliorer l’état des connaissances scientifiques au sujet de la faisabilité des procédés membranaires pour de nouvelles applications et de l’optimisation de leur fonctionnement à échelle semi-industrielle voire industrielle. Le développement de techniques analytiques poussées au service du Génie des Procédés est un réel apport à cette intensification. Des perspectives de recherche pour une utilisation plus sûre et plus durable de l’eau grâce aux procédés membranaires sont également présentées.
Mots-clés : procédés membranaires, intensification, génie des procédés, traitement de l'eau, eau potable, eaux usées, effluent industriel, polluants émergents
Jean-Philippe CROUÉ Rapporteur / Professeur des Université – Université de Poitiers
Julie MENDRET Rapporteure / Maître de Conférences HDR – Université de Montpellier
Christel CAUSSERAND Examinatrice / Professeure des Universités – Université de Toulouse 3
Alberto FIGOLI Examinateur / Directeur de Recherche – Université de Calabre, Italie
Pascal WONG WAH CHUNG Examinateur / Professeur des Universités – Aix-Marseille Université
Philippe MOULIN Tuteur d’HDR / Professeur des Universités – Aix-Marseille Université
Sylvain DURÉCU Invité / Directeur de la R&D chez Séché Environnement
19 juin 2024
- Récupération de catalyseurs homogènes au palladium issus de milieux pharmaceutiques par procédés membranaires / Soutenance de thèse Adrien Magne
Doctorant : Adrien MAGNE
Date et lieu : Mercredi 19 Juin à 9h, Amphithéâtre du CEREGE, Technopôle de l'Arbois-Méditerranée, 13545 Aix-en-Provence
Résumé : Les catalyseurs homogènes au palladium permettent de réaliser des réactions chimiques aux rendements et sélectivités élevés les rendant ainsi indispensables en pharmaceutique. Cependant, il s’agit de composés toxiques sensibles à la dégradation. Isoler ces catalyseurs en fin de synthèse sans perte d’activité mènerait donc à des gains environnementaux et économiques majeurs. Cette thèse, appliquée à un cas concret du groupe SANOFI, doit répondre à deux problématiques : (i) une matrice de solvants organiques qui a orienté l’étude vers les matériaux céramiques, plus résistants et permettant une industrialisation, et surtout (ii) un catalyseur et un intermédiaire pharmaceutique de tailles similaires, respectivement 701,9 et 568,5 g.mol-1. La nanofiltration de solvants organiques offre ainsi des perspectives intéressantes. Des catalyseurs de substitution plus lourds et/ou plus encombrés ont été sélectionnés et synthétisés, et des membranes de différents seuils de coupure ont été testées. De plus, de nombreuses méthodes analytiques ont été développées pour quantifier les performances du procédé mais également évaluer l’activité du catalyseur au cours de la séparation. Si la séparation n’est pas possible avec des membranes 1 kDa, l'intérêt d’augmenter la taille des composés a été confirmée avec des rétentions en palladium qui augmentent de 13 % (référence) à 18 % (substituant lourd). Les membranes de nanofiltration plus fines ont conduit à des résultats de rétentions légèrement supérieurs mais la caractérisation de celles-ci a conclu que les seuils de coupure étaient similaires, soulevant ainsi la problématique de la définition du seuil de coupure par différents fabricants.
Mots clés : nanofiltration de solvants organiques, membranes céramiques, récupération de catalyseurs, industrie pharmaceutique
Jury :
Murielle RABILLER-BAUDRY, Professeure des Universités à l'Université de Rennes - Rapporteure
Marwen MOUSSA, Maitre de Conférences à INRAE-AgroParisTech - Rapporteur
Didier NUEL, Maitre de Conférences à Centrale Méditerranée - Examinateur
Philippe KNAUTH, Professeur des Universités à AMU - Examinateur
Philippe MOULIN, Professeur des Universités à AMU - Directeur de thèse
Emilie CARRETIER, Professeure des Universités à AMU - Co-directrice de thèse
Thomas CLAIR, Membre invité (Sanofi Winthrop Industrie)
Lilivet Aracelis UBIERA RUIZ, Membre invitée (Sanofi Winthrop Industrie)