Procédés et Fluides Supercritiques

Extraction supercritique

Fractionnement supercritique

Génération de particules, cristallisation, encapsulation

Imprégnation (matrices et implants polymériques, silices, …)

suite...

Processes and Supercritical Fluids Team
Présentation

Supercritical (FSC) or subcritical fluids have specific properties which are exploited in a large number of applications at both laboratory and industrial scales. Their use represents an alternative to the use of organic solvents presenting pollution, toxicity and/or safety problems.

The “Supercritical Processes & Fluids” team has particular scientific and technological expertise enabling the design, operation and optimization of processes using supercritical CO2.
For better control of these processes, a multi-scale approach is favored. The team particularly studies the properties of supercritical fluids, phase equilibria, interface phenomena and transfers in pressurized media. Particular attention is also paid to the behavior of materials, both of synthetic and biological origin, in contact with supercritical CO2.
Modeling tools developed within the team make it possible to understand more specifically the transfer kinetics (flows, dispersion phenomena, mixing) and the thermodynamics of these pressurized environments. 

The team has strong activity focused on the following applications:
- Supercritical extraction, supercritical fractionation and shaping of plant origin products
- Development of sustained drug delivery systems (crystallization of active ingredients, encapsulation, impregnation, etc.)
- Supercritical sterilization of medical devices and health products
- Supercritical decellularization of grafts

Industrial partners (period 2020-2024):

BiotechOne ; Cousin Surgery ; Lattice Medical ; French Red ; Solvay ; Symrise ; THEA ; Total Energies

Responsable

x >

Annuaire personnel permanent

x >

Doctorants, Post-Doctorants et CDD

x >

Equipement

- Autoclaves d'extraction, de cristallisation et d'imprégnation - de quelques mL à plusieurs litres.
- Montage expérimental de cristallisation ou d'encapsulation en milieu supercritique.
- Pilote de fractionnement supercritique
- Autoclave à fenêtre
- Cellules Haute Pression de mesures d'équilibres de phases résistant jusqu'à 700 bar. 

Dernières publications de l'équipe

  • Zohra Laggoune, Yasmine Masmoudi, Seyed Ali Sajadian, Elisabeth Badens. Sirolimus solubility in supercritical carbon dioxide: Measurement and modeling.. Journal of CO2 Utilization, 2025, 93, pp.103034. ⟨10.1016/j.jcou.2025.103034⟩. ⟨hal-04954883⟩ Plus de détails...
  • Antonello Tangredi, Cristian Barca, Jean-Henry Ferrasse, Olivier Boutin. Combining process severity and response surface methodology: a comprehensive approach to phosphorus speciation in sewage sludge hydrothermal treatment. Journal of Environmental Management, 2025, 381, pp.125239. ⟨10.1016/j.jenvman.2025.125239⟩. ⟨hal-05039217⟩ Plus de détails...
  • Adil Mouahid, Magalie Claeys-Bruno, Sébastien Clercq. A New Methodology Based on Experimental Design and Sovová's Broken and Intact Cells Model for the Prediction of Supercritical CO 2 Extraction Kinetics. Processes, 2024, 12 (9), pp.1865. ⟨10.3390/pr12091865⟩. ⟨hal-05042333⟩ Plus de détails...
  • Adil Mouahid, Magalie Claeys-Bruno, Sébastien Clercq. A New Methodology Based on Experimental Design and Sovová’s Broken and Intact Cells Model for the Prediction of Supercritical CO2 Extraction Kinetics. Processes, 2024, 12 (9), pp.1865. ⟨10.3390/pr12091865⟩. ⟨hal-04791947⟩ Plus de détails...
  • Sébastien Clercq, Christelle Crampon, Elisabeth Badens. Atypical crystal growth within the supercritical antisolvent process: Experimental and molecular modeling approach with sodium bicarbonate. Journal of Supercritical Fluids, 2024, 207, pp.106188. ⟨10.1016/j.supflu.2024.106188⟩. ⟨hal-05042205⟩ Plus de détails...
x >

Rencontres scientifiques

Soutenances de thèses et HDR

2 octobre 2025 - Développement de technologies et procédés innovants dans le secteur cosmétique : de la plante tinctoriale au produit fini / Soutenance de thèse de Laura Guillouzo
Doctorante : Laura GUILLOUZO

Date et lieu : jeudi 02 octobre à 9h30 dans l’Amphithéâtre du Cerege du Technopôle de l'Arbois-Méditerranée (Batiment Pasteur, 13545, Aix-en-Provence)

Résumé : Afin d’offrir une alternative à la coloration d’origine pétrochimique dans l’industrie cosmétique, l’entreprise Le Rouge Français s’est tournée vers la coloration végétale. Un des défis majeurs pour les pigments issus de plantes tinctoriales est leur stabilité aux facteurs extérieurs lors de la manipulation et le stockage. Pour rester dans une démarche écologique, l’extraction au CO2 supercritique a été choisie dans ces travaux pour extraire les molécules responsables de la couleur des racines de garance puis d’étudier la faisabilité du procédé de Dispersion Séquentielle de Solution Saturée en Gaz (Sequential Dispersion Particles from Gas Saturated Solution SD-PGSS) pour la stabilisation des extraits obtenus. Ces procédés permettent d’extraire et d’encapsuler des composés d’intérêt sans solvant organique. Les encapsulats obtenus ont ensuite été intégrés à une formule de maquillage afin d’en étudier la stabilité.
Les études expérimentales de l'extraction de CO2 supercritique à partir de racines de garance - Rubia tinctorum L. - ont été réalisées sur différents volumes d'autoclave, à des pressions comprises entre 200 bar et 400 bar, à des températures comprises entre 40 °C et 60°C et à un débit de CO2 continu (0,14 kg/h pour l'échelle de laboratoire et 1,37 kg/h pour l'échelle semi- pilote). Les cinétiques d’extraction ont été modélisées à aux échelleslaboratoire et semi-pilote. Le rendement en colorant le plus élevé a été obtenu à 6,5 g/kg, à 400 bar et 60 °C. En ce qui concerne les teneurs en anthraquinones, les conditions optimales pour extraire des quantités maximales d'alizarine et de purpurine et minimales de lucidine, une molécule mutagène, étaient 300 bar et 60 °C. Une mise à l'échelle pilote a été réalisée à 60 °C, 200 bar et 240 bar, et à un débit de CO2 de 32 kg/h, afin de disposer d’une masse d’extrait suffisante pour être utilisée dans la formulation de rouges à lèvres et en vue d’une industrialisation future du procédé. La plus grande quantité d'extrait solide a été obtenue à 200 bar et 60 °C. Les extraits obtenus à échelle pilote ont été également utilisés ensuite pour l’étude d’encapsulation.
Pour l’encapsulation, le procédé SD-PGSS a été réalisé aux conditions opératoires de 150 bar et 65 °C avec l’acide arachidique comme excipient. La mise en oeuvre du procédé a conduit à l’obtention de rendements modérés (supérieurs à 60 %), avec des taux de chargement supérieurs à 90 % et des particules de diamètre moyen compris entre 0,7 μm et 11,4 μm. Les tests de stabilité réalisés en formulant des rouges à lèvres à partir d’encapsulats ont permis de montrer que l’encapsulation par SD-PGSS limite l’influence négatif du pH de la peau sur les pigments. 

Mot clés : CO2 supercritique, extraction végétale, SD-PGSS, cosmétiques, plantes tinctoriales

Jury :
Mme Raphaëlle SAVOIRE, Rapporteure, Professeure, Bordeaux INP
M. Nabil GRIMI, Rapporteur, Professeur, Université de Technologie de Compiègne
M. Grégory CHATEL, Examinateur, Maître de conférence, Université de Savoie Mont-Blanc
M. Antoine LEYBROS, Examinateur, Cadre scientifique, CEA Marcoule
Mme Yasmine MASMOUDI, Examinatrice, Maîtresse de conférence, Aix-Marseille Université
M. Jérôme LABILLE, Président du jury, Directeur de recherche, CNRS CEREGE
Mme Elisabeth BADENS, Directrice de thèse, Professeure, Aix-Marseille Université
M. Adil MOUAHID, Co-encadrant de thèse, Maître de conférence, Aix-Marseille Université
Mme Elodie CARPENTIER, Membre invitée, Ingénieure, Société Le Rouge Français
18 juillet 2025 - La modélisation et la simulation, des outils essentiels pour une meilleure compréhension des procédés en CO2 supercritique et une mise à l’échelle industrielle plus efficace / Soutenance HDR Adil Mouahid
Date et lieu : le 18 juillet à 10h ; amphi du Cerege (Europôle de l'Arbois).

Résumé : Dans un contexte réglementaire écologique évolutif incitant à la mise en place de procédés propres et innovants, les procédés mettant en jeu le CO2 supercritique (CO2-SC) font l’objet d’un intérêt grandissant. En effet, les avantages sont nombreux : le CO2 est un sous-produit de l’industrie, non inflammable, il est recyclé au cours du procédé, dans sa phase supercritique, c’est un solvant apolaire à géométrie variable (sélectif selon les conditions de pression et température) et reconnu comme atoxique. Le CO2 étant gazeux à pression ambiante, une séparation naturelle s’opère sans avoir recours à des opérations de séparation additionnelles. Enfin, la technologie supercritique est compacte lui donnant un avantage en termes de coûts de production.

Dans le but d’envisager une transition efficace et rentable vers cette technologie, les procédés utilisant le CO2-SC doivent être maîtrisés. Aboutir à cette maitrise nécessite de passer par une étape l’approfondissement des connaissances théoriques via la modélisation qui elle-même nécessite de passer par des étapes d’expérimentations. En effet, les données expérimentales permettent d’alimenter les modèles qui eux-mêmes donnent accès à des paramètres physiques tels que les solubilités, les coefficients de transfert, etc. utiles à des calculs de scale-up précis.

Dans la littérature, les données expérimentales sont nombreuses. Cependant, les données de modélisation sont moindres et le choix des modèles n’est pas toujours le même d’une étude à une autre rendant leur exploitation difficile. Ce travail présente donc mes travaux de recherche mêlant expérimentation et modélisation réalisés dans l’objectif d’approfondir les connaissances théoriques des procédés utilisant le CO2-SC mais également de faciliter les études de scale-up afin d’envisager une transition technologique efficace. Mes travaux de recherche ont été réalisés dans l’équipe Procédés et Fluides Supercritiques (FSC) animée par Elisabeth BADENS du laboratoire M2P2 (UMR7340, Aix-Marseille Université) à travers des collaborations académiques et industrielles qui ont nécessité le développement de nouveaux bancs expérimentaux et d’approfondir les aspects de modélisation et simulation soit en utilisant des considérations théoriques (jeux d’équations basés sur des théories de transfert de matière ou autre) soit en utilisant les plans d’expériences.

Membres du Jury
Severine CAMY Pr, LGC, Université de Toulouse
Maryline VIAN Pr, GREEN, Université d’Avignon
Caroline WEST Pr, ICOA, Université d’Orléans
Christophe JOUSSOT-DUBIEN, Directeur (HDR) CEA ISEC Marcoule
Elisabeth BADENS Pr, M2P2