Thermodynamique, Ondes, Numérique, Interfaces, Combustion

Effets thermiques dans les systèmes en rotation

Ondes et interfaces immergées

Modélisation des écoulements multiphasiques réactifs

Modélisation et simulation de la propagation des feux de forêts

Thermodynamique des mélanges

Thermodynamique, Ondes Numérique, Interfaces, Combustion
Présentation

L’équipe TONIC (Thermodynamique, Ondes, Numérique, Interfaces et Combustion) développe une activité de modélisation de phénomènes fortement multi-échelles. Elle couvre notamment les écoulements multiphasiques et/ou réactifs, depuis l’échelle de l’injecteur isolé (quelques mm) à l’échelle du feu de forêt pleinement développé (plusieurs hectares). 
Des méthodes numériques adaptées sont développées en parallèle, notamment pour l’imagerie des sols (détection de nappes par analyse acoustique), ou encore pour la modélisation des transferts radiatifs.

En parallèle à ces développements à caractère très multi-échelle, des travaux analytiques sont menés en appui à la construction de modèles. Un important effort de recherche est accordé à la modélisation de la thermodynamique des mélanges multiphasiques (calculs d’équilibre thermochimique, fermetures thermodynamiques complexes), ou encore au développement de modèles cinétiques réduits pour la combustion.

Responsable

  • Chargé de Recherche CNRS - HDR
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
x >

Annuaire personnel permanent

  • Chargé de Recherche CNRS - HDR
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Professeur des Universités AMU - émérite
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Professeur des Universités AMU - émérite
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Chargée de Recherche CNRS
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Maître de Conférences AMU
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Maître de Conférences AMU - HDR
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
x >

Doctorants, Post-Doctorants et CDD

x >

Dernières publications de l'équipe

  • Kevin Turgut, Ashwin Chinnayya, Pierre Boivin, Omar Dounia. A simplified thermodynamically-consistent single-step mechanism for hydrogen combustion. International Journal of Hydrogen Energy, 2025, 177, pp.151527. ⟨10.1016/j.ijhydene.2025.151527⟩. ⟨hal-05404957⟩ Plus de détails...
  • A. Fayet, Pierre Boivin, J. Perez Manes, S. Mimouni, T. Cadiou. Validation of NEPTUNE_CFD for single-phase natural convection. Nuclear Engineering and Design, 2025, 442, pp.114250. ⟨10.1016/j.nucengdes.2025.114250⟩. ⟨hal-05344238⟩ Plus de détails...
  • Marc Le Boursicaud, Song Zhao, Jean-Louis Consalvi, Pierre Boivin. Modeling self-ignition of high-pressure hydrogen leaks in confined space. Combustion and Flame, 2025, 280, pp.114386. ⟨10.1016/j.combustflame.2025.114386⟩. ⟨hal-05344209⟩ Plus de détails...
  • Xi Deng, Bin Xie, Omar Matar, Pierre Boivin. A novel hybrid approach for accurate simulation of compressible multi-component flows across all-Mach number. Journal of Computational Physics, 2025, 540, pp.114282. ⟨10.1016/j.jcp.2025.114282⟩. ⟨hal-05343677⟩ Plus de détails...
  • Jinhua Lu, Song Zhao, Pierre Boivin. A lattice-Boltzmann inspired finite volume solver for compressible flows. Computers and Mathematics with Applications, 2025, 187, pp.50-71. ⟨10.1016/j.camwa.2025.03.007⟩. ⟨hal-05086335v1⟩ Plus de détails...
x >

Dernières rencontres scientifiques

Projets en cours

Soutenances de thèses et HDR

22 janvier 2026 - Étude des Instabilités de Combustion au moyen des Méthodes Lattice-Boltzmann / Soutenance de thèse Ziyin Chen
Doctorante : Ziyin CHEN

Date et lieu : le jeudi 22 janvier 2026 à 13h45 ; amphi No.1 de Centrale Méditerranée

Résumé: Sous l’effet du réchauffement climatique, l’hydrogène s’impose comme une alternative prometteuse aux combustibles fossiles. Toutefois, les flammes hydrogène-air présentent de fortes instabilités, particulièrement en milieux confinés où les parois et les pertes de chaleur jouent un rôle déterminant. Cette thèse analyse la stabilité des flammes prémélangées hydrogène-air dans un brûleur de Hele-Shaw à l’aide de la méthode de Lattice-Boltzmann.

Les mécanismes d’instabilité hydrodynamique et thermodiffusive sont étudiés en 2D et 3D, avec et sans pertes thermiques aux parois. Les simulations mettent en évidence les conditions de rupture de symétrie, l’influence du nombre de Lewis, de la largeur du canal et des pertes de chaleur sur la morphologie et la vitesse de flamme. Des modèles réduits sont proposés pour prédire la forme des fronts, la formation de cuspides et l’évolution de la vitesse de flamme.

Ces résultats contribuent à une meilleure compréhension des flammes hydrogène confinées et fournissent des outils de modélisation utiles à la conception de micro-dispositifs sûrs.

Mots clés : Instabilités de combustion, Flamme laminaire, Écoulement confiné, Brûleur Hele-Shaw

Jury
Carmen JIMENEZ ; CIEMAT, Madrid ; Rapporteure
Laurent SELLE ; CNRS IMFT, Toulouse ; Rapporteur
Andrea GRUBER ; SINTEF, Trondheim ; Examinateur
Heinz PITSCH ; RWTH Aachen University, Aachen ; Examinateur
Luc VERVISCH ; INSA Rouen Normandie, Saint-Etienne-du-Rouvray ; Président de jury
Pierre BOIVIN ; CNRS M2P2 ; Directeur de thèse
Christophe ALMARCHA ; Aix-Marseille Université ; Co-Directeur de thèse
Bruno DENET ; Aix-Marseille Université ; Co-Encadrant de thèse
13 janvier 2026 - Modélisation Lattice-Boltzmann d'écoulements multiphasiques / Soutenance de thèse Thomas Gregorczyk
Doctorant : Thomas GREGORCZYK 

Date et lieu : le mardi 13 janvier à 14h00, amphi n°3 de Centrale Méditerranée

Résumé : Cette thèse a pour but de proposer de nouveaux schémas numériques pour réaliser des simulations d'écoulements multiphasiques. Le choix de la méthode se fera dans le cadre des méthodes Lattice-Boltzmann qui sont développées depuis plusieurs années au M2P2 pour différentes applications : écoulements compressibles, combustion, détonation, interactions fluide-structure, ...
Ce travail vise à développer un schéma stable pour des configurations athermales mais avec différents rapport de densité et divers nombres de Reynolds. Les récentes avancées du laboratoire seront intégrées au cadre LBM-multiphasique : schéma hybride avec une équation d'Allen-Cahn résolue par volumes finis, approximation low-Mach, schéma conservatif.

Ces nouveaux modèles seront validés de plusieurs manières différentes. D'abord de manière analytique, en vérifiant que le schéma LBM converge vers des équations macroscopiques cohérentes via un développement de Taylor. Ensuite avec des cas test académiques classiques : Poiseuille, Laplace, Rayleigh-Taylor, ...

Le cas test final sera un jet, qui est un cas intéressant qui mêle écoulement haut Reynolds, conditions aux limites d'entrée / sortie, et qui est utile pour un large panel d'applications.

Jury :
Raphaël LOUBÈRE, Rapporteur, DR CNRS, Institut de Mathématiques de Bordeaux 
Timm KRÜGER, Rapporteur, PR, University of Edinburgh                   
Gauthier WISSOCQ, Examinateur, IR, CEA CESTA                                 
Bénédicte CUENOT, Examinatrice, Senior Scientist, CERFACS                     
Vincent MOUREAU, Président du jury, DR CNRS, CORIA                                
Pierre BOIVIN, Directeur de thèse, CR CNRS, M2P2                                 
Song ZHAO, Co-encadrant de thèse, IR CNRS, M2P2