Non-local heat flux application for scrape-off layer plasma

The non-local expression proposed by Luciani-Mora-Virmont is implemented in a one dimensional fluid model for the scrape-off layer. Analytical solutions for heat equation are discussed as well as the impact of sheath boundary conditions on the continuity of the temperature profile. The non-local heat flux is compared to the Spitzer-Härm heat flux for different collisionality. KEYWORDS heat conduction, non-local transport, plasma physics 1 INTRODUCTION At the entrance of the scrape-off layer, the plasma collisionality í µí¼ ⋆ defined as the ratio between the field line length and collision mean free path is found to be of order unity. Despite this low collisionality, the tokamak edge plasma modelling relies mostly on the fluid approach and collisional closures that are theoretically only valid at high collisionality. Departure between Braginskii fluid description and kinetic modelling has been highlighted, particularly an underestimation of temperature gradient by the fluid approach. [1] Several kinetic corrections have been proposed to improve the plasma description at intermediate collisionality. [2-5] In this contribution, we investigate kinetic corrections to the local Spitzer-Härm (Braginskii) closure for the heat flux; more precisely, we focus on applying the non-local expression for the heat flux proposed by Luciani-Mora-Virmont [6] to scrape-off layer physics. In particular, we adapt boundary conditions and implement the non-local expression into a 1D hydrodynamic model for the scrape-off layer.

Hugo Bufferand, Guido Ciraolo, Pierfrancesco Di Cintio, Nicolas Fedorczak, Philippe Ghendrih, et al.. Non-local heat flux application for scrape-off layer plasma. Contributions to Plasma Physics, 2018, 58 (6-8), pp.563-569. ⟨10.1002/ctpp.201700162⟩. ⟨hal-02112673⟩

Journal: Contributions to Plasma Physics

Date de publication: 01-07-2018

  • Hugo Bufferand
  • Guido Ciraolo
  • Pierfrancesco Di Cintio
  • Nicolas Fedorczak
  • Philippe Ghendrih
  • Stefano Lepri
  • Roberto Livi
  • Yannick Marandet
  • Eric Serre
  • Patrick Tamain

Digital object identifier (doi):

x >