Procédés et Fluides Supercritiques

Extraction supercritique

Fractionnement supercritique

Génération de particules, cristallisation, encapsulation

Imprégnation (matrices et implants polymériques, silices, …)

suite...

Procédés et fluides supercritiques

Les fluides supercritiques (FSC) ou sous critiques ont des propriétés spécifiques qui sont exploitées dans un certain nombre d'applications aussi bien à l'échelle du laboratoire qu'à l'échelle industrielle. 
Leur utilisation représente une alternative à l'utilisation des solvants organiques présentant des problèmes de pollution, de toxicité et/ou de sécurité. L'équipe «Procédés et Fluides Supercritiques» met au point et développe des procédés utilisant principalement le dioxyde de carbone supercritique.

Les principaux thèmes de recherche abordés par l'Equipe «Procédés et Fluides Supercritiques» sont :

- Procédés de séparation et de mise en forme utilisant les FSC 
     - Extraction supercritique
     - Fractionnement supercritique
     - Génération de particules, cristallisation, encapsulation
     - Imprégnation (matrices et implants polymériques, silices, …)

- Hydrodynamique et phénomènes de dispersion dans les milieux Haute Pression

- Equilibres de phases dans les milieux Haute Pression

Responsable

x >

Annuaire personnel permanent

x >

Doctorants, Post-Doctorants et CDD

x >

Equipement

- Autoclaves d'extraction, de cristallisation et d'imprégnation - de quelques mL à plusieurs litres.
- Montage expérimental de cristallisation ou d'encapsulation en milieu supercritique.
- Pilote de fractionnement supercritique
- Autoclave à fenêtre
- Cellules Haute Pression de mesures d'équilibres de phases résistant jusqu'à 700 bar. 

Dernières publications de l'équipe

  • I. García-Casas, Christelle Crampon, A. Montes, C. Pereyra, E.J. Martínez de La Ossa, et al.. Supercritical CO2 impregnation of silica microparticles with quercetin. The Journal of Supercritical Fluids, 2019, 143, pp.157-161. 〈hal-01946903〉 Plus de détails...
  • Elisabeth Badens, Yasmine Masmoudi, Adil Mouahid, Christelle Crampon. Current situation and perspectives in drug formulation by using supercritical fluid technology. The Journal of Supercritical Fluids, 2018, 134, pp.274 - 283. 〈10.1016/j.supflu.2017.12.038〉. 〈hal-01815987〉 Plus de détails...
  • Abir Bouledjouidja, Yasmine Masmoudi, M. Sergent, Elisabeth Badens. Effect of operational conditions on the supercritical carbon dioxide impregnation of anti-inflammatory and antibiotic drugs in rigid commercial intraocular lenses. Journal of Supercritical Fluids, Elsevier, 2017, 130, pp.63 - 75. 〈http://dx.doi.org/10.1016/j.supflu.2017.07.015〉. 〈10.1016/j.supflu.2017.07.015〉. 〈hal-01578745〉 Plus de détails...
  • Adil Mouahid, Cyril Dufour, Elisabeth Badens. Supercritical CO 2 extraction from endemic Corsican plants; comparison of oil composition and extraction yield with hydrodistillation method. Journal of CO2 Utilization, Elsevier, 2017, 20, pp.263 - 273. 〈10.1016/j.jcou.2017.06.003〉. 〈hal-01596432〉 Plus de détails...
  • Frederique Bertaud, Christelle Crampon, Elisabeth Badens. Volatile terpene extraction of spruce, fir and maritime pine wood: supercritical CO2 extraction compared to classical solvent extractions and steam distillation . Holzforschung, De Gruyter, 2017, 71 (7-8), pp.667-763. 〈10.1515/hf-2016-0197〉. 〈hal-01596420〉 Plus de détails...
x >

Rencontres scientifiques

Soutenances de thèses et HDR

26 novembre 2018 - Etude des mécanismes de cristallisation en milieu supercritique : Application à des principes actifs pharmaceutiques / Soutenance de thèse Sébastien CLERCQ
Doctorant : Sébastien CLERCQ

Date de la soutenance : Lundi 26 Novembre 2018 à 10h / Grand Amphithéâtre du CEREGE, site de l'Arbois

Résumé de la thèse
Ce manuscrit présente une étude du procédé Supercritique Anti-Solvant (SAS) en combinant un travail expérimental et une étude de modélisation moléculaire. En comparaison aux méthodes traditionnelles de cristallisation en solution, le procédé SAS permet une baisse significative des quantités de solvants utilisées, un meilleur contrôle des caractéristiques des poudres générées ainsi qu’une plus grande sélectivité polymorphique. De nombreuses études expérimentales ou de modélisation numérique ont permis une meilleure compréhension de ce procédé, mais certains aspects, liés aux mécanismes de cristallisation sous pression, demeurent moins discutés. Par une investigation de ces mécanismes, l’objectif de ce travail a été de développer et de valider des méthodes permettant un meilleur contrôle du faciès des poudres générées et de la forme du polymorphe. De ces caractéristiques dépendent certaines propriétés des cristaux, telles que leur cinétique de dissolution ou encore leur stabilité physique et chimique, particulièrement importante pour le domaine pharmaceutique.
Le travail expérimental a conduit à la recristallisation du sulfathiazole, un soluté polymorphe modèle permettant une étude cristallographique complète grâce à sa faculté de cristalliser sous cinq formes différentes. Il a été micronisé avec succès à partir de différents solvants organiques et pour différentes conditions opératoires. Deux formes ont majoritairement été obtenues. En utilisant l’acétone comme solvant, la forme I (la moins stable) est formée lorsque le débit de solution organique et la sursaturation globale sont élevés. La forme IV (plus stable que la forme I) est formée lorsque les conditions de mélange sont peu intenses, à savoir pour de faibles débits des deux phases et quelles que soient les conditions de sursaturation.
L’étude de modélisation moléculaire a eu pour objectif de prédire le faciès des cristaux en fonction de l’environnement de croissance. Dans un premier temps, les cristaux de sulfathiazole ont été modélisés in vacuo. Ensuite, la nature du milieu de cristallisation a été prise en compte grâce à des simulations d’adsorption des solvants sur les différentes faces du cristal. Il a ainsi été prédit une faible adsorption de l’acétonitrile et du CO2, n’engendrant aucune modification des caractéristiques des cristaux de sulfathiazole, une adsorption significative de l’acétone et du tétrahydrofurane sur certaines faces identifiées, modifiant le faciès des cristaux, et enfin, une adsorption très importante de l’acide acétique sur l’ensemble des faces. Ces résultats ont été validés par l’observation des cristaux obtenus expérimentalement. La cohérence entre les résultats de modélisation et les résultats expérimentaux montre la pertinence de cette approche novatrice pour les milieux supercritiques.

Jury:
Elisabeth BADENS Prof. Aix Marseille Université, M2P2         Directrice
Brice CALVIGNAC         MC         Université d’Anger, MINT         Rapporteur
Séverine CAMY         Prof. INP ENCIACET Toulouse         Rapporteur
Nadine CANDONI         Prof. Aix Marseille Université, CINaM         Examinatrice
Sylvaine LAFONT         Dr. Sanofi Sisteron         Examinatrice
Antoine LEYBROS Dr. CEA Marcoule, LPSD         Examinateur
Philip LLEWELLYN Prof. Aix Marseille Université, MADIREL Examinateur
Adil MOUAHID         MC         Aix Marseille Université, M2P2         Directeur
Gérard PEPE         DR Membre invité         Encadrant
4 avril 2018 - Développement de procèdes propres utilisant le co2 supercritique/ Soutenance HDR Christelle CRAMPON
Dr. Christelle CRAMPON

Date de la soutenance : Mercredi 4 avril 2018 à 10:00 Grand amphithéâtre du CEREGE

Résumé des travaux
Lors de cette présentation, je vais faire une rétrospective de mes activités de recherche depuis le début de ma carrière d’enseignant-chercheur, effectuée en grande partie au sein de l’équipe « Procédés et Fluides Supercritiques » du laboratoire Mécanique, Modélisation et Procédés Propres. Mes activités concernent essentiellement le développement de procédés utilisant le CO2 supercritique. L’utilisation de ce solvant garantit la mise en place de procédés propres et compacts. Le CO2 supercritique est en effet reconnu par “the U.S. Food and Drug Administration” (US FDA) comme étant un solvant GRAS (Generally Recognized As Safe) dont l’utilisation est en adéquation avec des applications alimentaires ou liées à la santé. Il est d’ailleurs approuvé pour la production de produits agroalimentaires sans déclaration. Ce solvant est également plutôt sélectif ; cette sélectivité est modulée en faisant varier la pression et la température. La récupération du produit ciblé ou sa séparation avec le fluide supercritique se fait par simple dépressurisation puisque le CO2 est gazeux et perd son pouvoir solvant dans les conditions ambiantes de pression et de température. Les coordonnées critiques du CO2 sont facilement accessibles (Tc = 304,21 K ; Pc = 7,38 MPa) et notamment la température critique qui permet d’utiliser le CO2 supercritique pour travailler avec des composés thermosensibles. 

Parmi les procédés étudiés, je vais aborder l’extraction de composés d’intérêt par CO2 supercritique à partir de matière solide (plantes, microalgues…), le fractionnement supercritique et enfin l’élaboration de systèmes à libération contrôlée en milieu supercritique. Ces activités de recherche ont trouvé des applications larges allant de l’énergie avec la production de biocarburants, la santé avec l’élaboration de liposomes et de systèmes à libération contrôlée, la parfumerie avec le fractionnement de mélanges liquides complexes issus de plantes… Pour chacun des procédés présentés, je vais rappeler les résultats essentiels et proposer des perspectives de recherches. 

Mots clefs : CO2 supercritique, procédés propres, extraction, fractionnement, génération de particules

Jury:
Rapporteurs
Dr Nora Ventosa – Université de Barcelone
Professeur Jean-Stéphane Condoret – Université Paul-Sabatier
Professeur Jacques Fages - Ecole des Mines d’Albi-Carmaux
Évaluateurs
Dr Stéphane Sarrade - CEA Saclay
Tutrice
Professeur Elisabeth Badens - Aix-Marseille Université