En cliquant sur le bouton ci-dessous, vous pouvez consulter la liste des dernières publications scientifiques du laboratoire dans la "Collection HAL du M2P2" qui permet de faire des recherches par année, auteur, type de document (article scientifique, ouvrage, chapitre d'ouvrage, actes de conférence...), etc.
Pour un certain nombre d'articles, vous avez accès au texte intégral en format post-print ou pdf éditeur.
Xueru Yan, Stéphane Anguille, Marc Bendahan, Philippe Moulin. Toluene removal from gas streams by an ionic liquid membrane: Experiment and modeling. Chemical Engineering Journal, Elsevier, 2021, 404, pp.127109. ⟨10.1016/j.cej.2020.127109⟩. ⟨hal-02958176⟩ Plus de détails...
Ionic liquids (ILs) are promising alternative solvents for traditional organic compounds using selective separation. However, some environmental risks of ILs, resulting in a limitation of their applications in industry. In this work, the stability of ILs into multi-channel tubular ceramic membranes (ILM) provides a promising way to realize the use of ILs with environmental damages reducing. This novel process has been investigated for toluene removal from a toluene/air gas mixture based on 1-butyl-3-imidazolium bis(trifluoromethylsulfonyl)amide ([Bmim][NTf2]) as a liquid sorbent. In addition, the effects of operating conditions on toluene separation were studied and discussed by experiment and modeling. The absorption capacity of toluene by the ILM on proposed operating conditions was around 224.74 mg per gram of the ionic liquid. The support ceramic membrane can effectively prevent ILs leakage from causing secondary waste and ensure longtime operation. Regeneration of polluted ILM was available.
Xueru Yan, Stéphane Anguille, Marc Bendahan, Philippe Moulin. Toluene removal from gas streams by an ionic liquid membrane: Experiment and modeling. Chemical Engineering Journal, Elsevier, 2021, 404, pp.127109. ⟨10.1016/j.cej.2020.127109⟩. ⟨hal-02958176⟩
David Ranava, Cassandra Backes, Ganesan Karthikeyan, Olivier Ouari, Audrey Soric, et al.. Metabolic Exchange and Energetic Coupling between Nutritionally Stressed Bacterial Species: Role of Quorum-Sensing Molecules. mBio, 2021, 12 (1), pp.e02758-20. ⟨10.1128/mBio.02758-20⟩. ⟨hal-03115469⟩ Plus de détails...
Formation of multispecies communities allows nearly every niche on earth to be colonized, and the exchange of molecular information among neighboring bacteria in such communities is key for bacterial success. To clarify the principles controlling interspecies interactions, we previously developed a coculture model with two anaerobic bacteria, Clostridium acetobutylicum (Gram positive) and Desulfovibrio vulgaris Hildenborough (Gram negative, sulfate reducing). Under conditions of nutritional stress for D. vulgaris, the existence of tight cell-cell interactions between the two bacteria induced emergent properties. Here, we show that the direct exchange of carbon metabolites produced by C. acetobutylicum allows D vulgaris to duplicate its DNA and to be energetically viable even without its substrates. We identify the molecular basis of the physical interactions and how autoinducer-2 (AI-2) molecules control the interactions and metabolite exchanges between C. acetobutylicum and D. vulgaris (or Escherichia coli and D. vulgaris). With nutrients, D. vulgaris produces a small molecule that inhibits in vitro the AI-2 activity and could act as an antagonist in vivo. Sensing of AI-2 by D. vulgaris could induce formation of an intercellular structure that allows directly or indirectly metabolic exchange and energetic coupling between the two bacteria.
David Ranava, Cassandra Backes, Ganesan Karthikeyan, Olivier Ouari, Audrey Soric, et al.. Metabolic Exchange and Energetic Coupling between Nutritionally Stressed Bacterial Species: Role of Quorum-Sensing Molecules. mBio, 2021, 12 (1), pp.e02758-20. ⟨10.1128/mBio.02758-20⟩. ⟨hal-03115469⟩
J. M. Lyu, Paul G. Chen, G. Boedec, M. Leonetti, M. Jaeger. An isogeometric boundary element method for soft particles flowing in microfluidic channels. Computers and Fluids, Elsevier, 2021, 214, pp.104786. ⟨10.1016/j.compfluid.2020.104786⟩. ⟨hal-02476945v2⟩ Plus de détails...
Understanding the flow of deformable particles such as liquid drops, synthetic capsules and vesicles, and biological cells confined in a small channel is essential to a wide range of potential chemical and biomedical engineering applications. Computer simulations of this kind of fluid-structure (mem-brane) interaction in low-Reynolds-number flows raise significant challenges faced by an intricate interplay between flow stresses, complex particles' in-terfacial mechanical properties, and fluidic confinement. Here, we present an isogeometric computational framework by combining the finite-element method (FEM) and boundary-element method (BEM) for an accurate prediction of the deformation and motion of a single soft particle transported in microfluidic channels. The proposed numerical framework is constructed consistently with the isogeometric analysis paradigm; Loop's subdivision elements are used not only for the representation of geometry but also for the membrane mechanics solver (FEM) and the interfacial fluid dynamics solver (BEM). We validate our approach by comparison of the simulation results with highly accurate benchmark solutions to two well-known examples available in the literature, namely a liquid drop with constant surface tension in a circular tube and a capsule with a very thin hyperelastic membrane in a square channel. We show that the numerical method exhibits second-order convergence in both time and space. To further demonstrate the accuracy and long-time numerically stable simulations of the algorithm, we perform hydrodynamic computations of a lipid vesicle with bending stiffness and a red blood cell with a composite membrane in capillaries. The present work offers some possibilities to study the deformation behavior of confining soft particles, especially the particles' shape transition and dynamics and their rheological signature in channel flows.
J. M. Lyu, Paul G. Chen, G. Boedec, M. Leonetti, M. Jaeger. An isogeometric boundary element method for soft particles flowing in microfluidic channels. Computers and Fluids, Elsevier, 2021, 214, pp.104786. ⟨10.1016/j.compfluid.2020.104786⟩. ⟨hal-02476945v2⟩
J. M. Lyu, Paul G. Chen, G. Boedec, M. Leonetti, M. Jaeger, et al.. An isogeometric boundary element method for soft particles flowing in microfluidic channels. Computers and Fluids, Elsevier, 2021, 214, pp.104786. ⟨10.1016/j.compfluid.2020.104786⟩. ⟨hal-03082862⟩ Plus de détails...
Understanding the flow of deformable particles such as liquid drops, synthetic capsules and vesicles, and biological cells confined in a small channel is essential to a wide range of potential chemical and biomedical engineering applications. Computer simulations of this kind of fluid-structure (membrane) interaction in low-Reynolds-number flows raise significant challenges faced by an intricate interplay between flow stresses, complex particles' interfacial mechanical properties, and fluidic confinement. Here, we present an isogeometric computational framework by combining the finite-element method (FEM) and boundary-element method (BEM) for an accurate prediction of the deformation and motion of a single soft particle transported in microfluidic channels. The proposed numerical framework is constructed consistently with the isogeometric analysis paradigm; Loop's subdivision elements are used not only for the representation of geometry but also for the membrane mechanics solver (FEM) and the interfacial fluid dynamics solver (BEM). We validate our approach by comparison of the simulation results with highly accurate benchmark solutions to two well-known examples available in the literature, namely a liquid drop with constant surface tension in a circular tube and a capsule with a very thin hyperelastic membrane in a square channel. We show that the numerical method exhibits second-order convergence in both time and space. To further demonstrate the accuracy and long-time numerically stable simulations of the algorithm, we perform hydrodynamic computations of a lipid vesicle with bending stiffness and a red blood cell with a composite membrane in capillaries. The present work offers some possibilities to study the deformation behavior of confining soft particles, especially the particles' shape transition and dynamics and their rheological signature in channel flows.
J. M. Lyu, Paul G. Chen, G. Boedec, M. Leonetti, M. Jaeger, et al.. An isogeometric boundary element method for soft particles flowing in microfluidic channels. Computers and Fluids, Elsevier, 2021, 214, pp.104786. ⟨10.1016/j.compfluid.2020.104786⟩. ⟨hal-03082862⟩
Christophe Friess, Lars Davidson. A formulation of PANS capable of mimicking IDDES. International Journal of Heat and Fluid Flow, Elsevier, 2020, 86, pp.108666. ⟨10.1016/j.ijheatfluidflow.2020.108666⟩. ⟨hal-02944327⟩ Plus de détails...
Christophe Friess, Lars Davidson. A formulation of PANS capable of mimicking IDDES. International Journal of Heat and Fluid Flow, Elsevier, 2020, 86, pp.108666. ⟨10.1016/j.ijheatfluidflow.2020.108666⟩. ⟨hal-02944327⟩
Journal: International Journal of Heat and Fluid Flow
S. Zhao, G. Farag, Pierre Boivin, P. Sagaut. Toward fully conservative hybrid lattice Boltzmann methods for compressible flows. Physics of Fluids, American Institute of Physics, 2020, 32 (12), pp.126118. ⟨10.1063/5.0033245⟩. ⟨hal-03087980⟩ Plus de détails...
S. Zhao, G. Farag, Pierre Boivin, P. Sagaut. Toward fully conservative hybrid lattice Boltzmann methods for compressible flows. Physics of Fluids, American Institute of Physics, 2020, 32 (12), pp.126118. ⟨10.1063/5.0033245⟩. ⟨hal-03087980⟩
Tatyana Lyubimova, Anatoly Lepikhin, Yanina Parshakova, Vadim Kolchanov, Carlo Gualtieri, et al.. A Numerical Study of the Influence of Channel-Scale Secondary Circulation on Mixing Processes Downstream of River Junctions. Water, MDPI, 2020, 12 (11), pp.2969. ⟨10.3390/w12112969⟩. ⟨hal-02989736⟩ Plus de détails...
A rapid downstream weakening of the processes that drive the intensity of transverse mixing at the confluence of large rivers has been identified in the literature and attributed to the progressive reduction in channel scale secondary circulation and shear-driven mixing with distance downstream from the junction. These processes are investigated in this paper using a three-dimensional computation of the Reynolds averaged Navier Stokes equations combined with a Reynolds stress turbulence model for the confluence of the Kama and Vishera rivers in the Russian Urals. Simulations were carried out for three different configurations: an idealized planform with a rectangular cross-section (R), the natural planform with a rectangular cross-section (P), and the natural planform with the measured bathymetry (N), each one for three different discharge ratios. Results show that in the idealized configuration (R), the initial vortices that form due to channel-scale pressure gradients decline rapidly with distance downstream. Mixing is slow and incomplete at more than 10 multiples of channel width downstream from the junction corner. However, when the natural planform and bathymetry are introduced (N), rates of mixing increase dramatically at the junction corner and are maintained with distance downstream. Comparison with the P case suggests that it is the bathymetry that drives the most rapid mixing and notably when the discharge ratio is such that a single channel-scale vortex develops aided by curvature in the post junction channel. This effect is strongest when the discharge of the tributary that has the same direction of curvature as the post junction channel is greatest. A comprehensive set of field data are required to test this conclusion. If it holds, theoretical models of mixing processes in rivers will need to take into account the effects of bathymetry upon the interaction between river discharge ratio, secondary circulation development, and mixing rates.
Tatyana Lyubimova, Anatoly Lepikhin, Yanina Parshakova, Vadim Kolchanov, Carlo Gualtieri, et al.. A Numerical Study of the Influence of Channel-Scale Secondary Circulation on Mixing Processes Downstream of River Junctions. Water, MDPI, 2020, 12 (11), pp.2969. ⟨10.3390/w12112969⟩. ⟨hal-02989736⟩
Adil Mouahid, Kanitta Seengeon, Mathieu Martino, Christelle Crampon, Avery Kramer, et al.. Selective extraction of neutral lipids and pigments from Nannochloropsis salina and Nannochloropsis maritima using supercritical CO2 extraction: Effects of process parameters and pre-treatment. The Journal of Supercritical Fluids, 2020, 165, pp.104934. ⟨10.1016/j.supflu.2020.104934⟩. ⟨hal-02960133⟩ Plus de détails...
Supercritical CO2 extraction experiments were conducted to investigate the effects of pretreatment and process parameters on neutral lipids, chlorophylls and carotenoids recovery on two species of Nannochloropsis. For Nannochloropsis maritima, a factorial experimental design was performed (P: [100-300] bar, T: [313-333] K). The highest extraction yields were obtained at the highest pressures and temperatures. Two drying modes, ring drying and air flow drying, were compared. Although total extraction yield and extraction kinetics were observed to be greater using air flow dried microalgae, extracts from this drying method resulted in partial degradation of glycerides in free fatty acids. Ring dried extracts maintained the same neutral lipid composition as the initial biomass. Based on these results, ring dried Nannochloropsis salina was extracted using supercritical CO2 at 333 K and both 300-400 bar. Extraction curves were modelled using the Sovova's mathematical model.
Adil Mouahid, Kanitta Seengeon, Mathieu Martino, Christelle Crampon, Avery Kramer, et al.. Selective extraction of neutral lipids and pigments from Nannochloropsis salina and Nannochloropsis maritima using supercritical CO2 extraction: Effects of process parameters and pre-treatment. The Journal of Supercritical Fluids, 2020, 165, pp.104934. ⟨10.1016/j.supflu.2020.104934⟩. ⟨hal-02960133⟩
Nicolas Lusinier, Isabelle Seyssiecq, Cecilia Sambusiti, Matthieu Jacob, Nicolas Lesage, et al.. A comparative study of conventional activated sludge and fixed bed hybrid biological reactor for oilfield produced water treatment: influence of hydraulic retention time. Chemical Engineering Journal, Elsevier, 2020, pp.127611. ⟨10.1016/j.cej.2020.127611⟩. ⟨hal-02989059⟩ Plus de détails...
Nicolas Lusinier, Isabelle Seyssiecq, Cecilia Sambusiti, Matthieu Jacob, Nicolas Lesage, et al.. A comparative study of conventional activated sludge and fixed bed hybrid biological reactor for oilfield produced water treatment: influence of hydraulic retention time. Chemical Engineering Journal, Elsevier, 2020, pp.127611. ⟨10.1016/j.cej.2020.127611⟩. ⟨hal-02989059⟩
Dan Feng, Audrey Soric, Olivier Boutin. Treatment technologies and degradation pathways of glyphosate: A critical review. Science of the Total Environment, Elsevier, 2020, 742, pp.140559. ⟨10.1016/j.scitotenv.2020.140559⟩. ⟨hal-02960128⟩ Plus de détails...
Glyphosate is one of the most widely used post-emergence broad-spectrum herbicides in the world. This molecule has been frequently detected in aqueous environment and can cause adverse effects to plants, animals, microorganisms, and humans. This review offers a comparative assessment of current treatment methods (physical, biological, and advanced oxidation process) for glyphosate wastewaters, considering their advantages and drawbacks. As for other molecules, adsorption does not destroy glyphosate. It can be used before other processes, if glyphosate concentrations are very high, or after, to decrease the final concentration of glyphosate and its by-products. Most of biological and oxidation processes can destroy glyphosate molecules, leading to by-products (the main ones being AMAP and sarcosine) that can be or not affected by these processes. This point is of major importance to control process efficiency. That is the reason why a specific focus on glyphosate degradation pathways by biological treatment or different advanced oxidation processes is proposed. However, one process is usually not efficient enough to reach the required standards. Therefore, the combination of processes (for instance biological and oxidation ones) seems to be high-performance technologies for the treatment of glyphosate-containing wastewater, due to their potential to overcome some drawbacks of each individual process. Finally, this review provides indications for future work for different treatment processes to increase their performances and gives some insights into the treatment of glyphosate or other organic contaminants in wastewater.
Dan Feng, Audrey Soric, Olivier Boutin. Treatment technologies and degradation pathways of glyphosate: A critical review. Science of the Total Environment, Elsevier, 2020, 742, pp.140559. ⟨10.1016/j.scitotenv.2020.140559⟩. ⟨hal-02960128⟩