Thermodynamique, Ondes, Numérique, Interfaces, Combustion

Effets thermiques dans les systèmes en rotation

Ondes et interfaces immergées

Modélisation des écoulements multiphasiques réactifs

Modélisation et simulation de la propagation des feux de forêts

Thermodynamique des mélanges

Présentation

L’équipe TONIC (Thermodynamique, Ondes, Numérique, Interfaces et Combustion) développe une activité de modélisation de phénomènes fortement multi-échelles. Elle couvre notamment les écoulements multiphasiques et/ou réactifs, depuis l’échelle de l’injecteur isolé (quelques mm) à l’échelle du feu de forêt pleinement développé (plusieurs hectares). 
Des méthodes numériques adaptées sont développées en parallèle, notamment pour l’imagerie des sols (détection de nappes par analyse acoustique), ou encore pour la modélisation des transferts radiatifs.

En parallèle à ces développements à caractère très multi-échelle, des travaux analytiques sont menés en appui à la construction de modèles. Un important effort de recherche est accordé à la modélisation de la thermodynamique des mélanges multiphasiques (calculs d’équilibre thermochimique, fermetures thermodynamiques complexes), ou encore au développement de modèles cinétiques réduits pour la combustion.

Responsable

x >

Annuaire personnel permanent

  • Chargé de Recherche CNRS
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Professeur Centrale Marseille
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Professeur émérite AMU
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Maître de Conférences AMU
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Professeur des Universités AMU
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Professeur émérite AMU
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Chargée de Recherche CNRS - HDR
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Directeur de Recherche CNRS
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Chargée de Recherche CNRS
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Maître de Conférences AMU - HDR
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
x >

Doctorants, Post-Doctorants et CDD

  • Post Doctorant
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Doctorant
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Doctorant AMU
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • Doctorant AMU - BTU
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Doctorant AMU
    équipe Thermodynamique Ondes Numérique Interfaces Combustion
  • équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Post Doctorant
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
  • Post Doctorant
    équipe Thermodynamiques, Ondes, Numérique, Interfaces et Combustion
x >

Dernières publications de l'équipe

  • Pierre Boivin, M.A. Cannac, O. Le Metayer. A thermodynamic closure for the simulation of multiphase reactive flows. International Journal of Thermal Sciences, Elsevier, 2019, 137, pp.640-649. 〈hal-01981954〉 Plus de détails...
  • Colette Nicoli, Pierre Haldenwang, Bruno Denet. Premixed flame dynamics in presence of mist. Combustion Science and Technology, Taylor & Francis, 2019, 191 (2), pp.197-207. 〈10.1080/00102202.2018.1453728〉. 〈hal-01820207〉 Plus de détails...
  • Harold Berjamin, Bruno Lombard, Guillaume Chiavassa, Nicolas Favrie. Plane-strain waves in nonlinear elastic solids with softening. Wave Motion, Elsevier, 2019, 89, pp.65-78. 〈hal-02057946〉 Plus de détails...
  • Nicolas Frangieh, Dominique Morvan, Sofiane Meradji, G. Accary, O. Bessonov. Numerical simulation of grassland fires behavior using an implicit physical multiphase model. Fire Safety Journal, Elsevier, 2018, 102, pp.37-47. ⟨hal-01978037⟩ Plus de détails...
  • S. Bhattacharjee, G. Ricciardi, Stéphane Viazzo. LES in a Concentric Annular Pipe: Analysis of Mesh Sensitivity and Wall Pressure Fluctuations. DIRECT AND LARGE-EDDY SIMULATION X (10th ERCOFTAC Workshop on Direct and Large Eddy Simulation (DLES)), 24, Springer, pp.93-100, 2018, ERCOFTAC Series. 〈hal-01946986〉 Plus de détails...
x >

Dernières rencontres scientifiques

Soutenances de thèses et HDR

28 Mai 2015 - "Formes d'une vésicule en géométrie confinée" / Soutenance de thèse: Roberto TROZZO
Doctorant: Roberto TROZZO

Directeurs de thèse: Marc  JAEGER

Date de soutenance: le jeudi 28 mai à 14 heures, dans l'amphi 3A de l'Ecole Centrale

Résumé: Les vésicules sont des gouttes de rayon de quelques dizaines de micromètres, limitées par une membrane lipidique imperméable d'environ 4 nm d'épaisseur, et immergées dans un fluide visqueux externe. Les propriétés spécifiques de la membrane de la vésicule rendent le système très déformable et très contraint dans le même temps. Les vésicules représentent également un modèle simplifié intéressant pour les globules rouges, car ils partagent aussi certains comportements mécaniques similaires. Mon étude s’intéresse à la modélisation d'une vésicule soumise à des contraintes externes d'origine hydrodynamique, dans le régime Stokes et dans des domaines confinés. À partir d'un modèle BEM déjà existant pour des fluides infinis, des méthodes numériques originales sont développés pour faire face au calcul des interactions entre la membrane de la vésicule et les frontières solides. Une attention particulière est accordée à la situation d'une vésicule qui sédimente vers un mur horizontal et une vésicule soumise à un écoulement de Poiseuille dans un capillaire étroit.


Abstract: Vesicles are drops of radius of a few tens micrometers, bounded by an impermeable lipid membrane of approximately 4 nm thickness, and embedded in an external viscous fluid. The specific properties of the vesicle membrane make the system very deformable and very constrained at the same time. Vesicles represent also an interesting simplified model for red blood cells, since they also share some similar mechanical behaviours. My study deals with the modeling of a vesicle subjected to external stresses of hydrodynamical origin, in the Stokes regime and in confined domains. Starting from an existing BEM model for free space flows, original numerical methods are developed to deal with the computation of interactions between the vesicle membrane and solid boundaries. A particular attention is paid to the situation of a vesicle sedimenting towards a planar wall and a vesicle submitted to a Poiseuille flow in a narrow capillary.

Jury:
M.   Patrick  BONTOUX - M2P2 - AMU
M.  Marc  JAEGER - M2P2 - Centrale Marseille (Directeur de thèse)
M.  Marcel   LACROIX - Université de Sherbrooke (Rapporteur)
M.  Simon  MENDEZ - I3M - Université de Montpellier
M.  Thomas   PODGORSKI - Liphy - Université Joseph Fourier (Rapporteur)
M.  Pierre   SAGAUT - M2P2 - AMU