Procédés et mécanique aux petites échelles PROMETHEE
Micro-objets déformables sous forçage hydrodynamique
Microfluidique et Procédés
Organisation des écoulements aux petites échelles
Séparations membranaires
suite...
Présentation
L’équipe PROcédés et MEcanique aux petiTes écHEllEs (PROMETHEE) développe des compétences marquées relevant aussi bien de la mécanique des milieux continus que du génie des procédés tout en combinant approche expérimentale et développement de théories et de modèles. L’originalité des études menées se décline selon plusieurs spécificités :
Echelle micro-nano d’observation et d’analyse qui évacue les problématiques liées à la turbulence (régime de Stokes) mais nécessite de considérer des aspects aux frontières de la discipline ;
Rôle prédominant des interfaces : interactions avec les parois solides à l’échelle nano (nano-tubes), interaction fluide-structure avec des membranes fluides ou polymérisée à l’échelle méso ;
Connexion avec les fluides complexes, la matière molle et les systèmes biologiques.
Sur le thème de la micro- et nano-fluidique, les objets d’étude, physico-chimiques (gouttes, capsules,…) et biologiques (vésicules, globules rouges,…), comprennent aussi les procédés intensifiés d’encapsulation et de vectorisation par microréacteur, thèmes en plein essor. L’équipe développe également des outils de caractérisation de l’organisation aux petites échelles comme le développement de simulations numériques pour rendre compte de la ségrégation obtenue au sein de milieux granulaires et la mise au point de méthode chimique de caractérisation des effets de micromélange (mélange à l’échelle moléculaire). A cela s’ajoute une activité de caractérisation et modélisation thermodynamique de milieux complexes.
Les outils numériques développés et mis en œuvre sont variés : intégrale de frontière, éléments finis, immersed boundary method, méthode Lattice Boltzman…
J. M. Lyu, Paul G. Chen, G. Boedec, M. Leonetti, M. Jaeger. An isogeometric boundary element method for soft particles flowing in microfluidic channels. Computers and Fluids, Elsevier, 2021, 214, pp.104786. ⟨10.1016/j.compfluid.2020.104786⟩. ⟨hal-02476945v2⟩ Plus de détails...
Understanding the flow of deformable particles such as liquid drops, synthetic capsules and vesicles, and biological cells confined in a small channel is essential to a wide range of potential chemical and biomedical engineering applications. Computer simulations of this kind of fluid-structure (mem-brane) interaction in low-Reynolds-number flows raise significant challenges faced by an intricate interplay between flow stresses, complex particles' in-terfacial mechanical properties, and fluidic confinement. Here, we present an isogeometric computational framework by combining the finite-element method (FEM) and boundary-element method (BEM) for an accurate prediction of the deformation and motion of a single soft particle transported in microfluidic channels. The proposed numerical framework is constructed consistently with the isogeometric analysis paradigm; Loop's subdivision elements are used not only for the representation of geometry but also for the membrane mechanics solver (FEM) and the interfacial fluid dynamics solver (BEM). We validate our approach by comparison of the simulation results with highly accurate benchmark solutions to two well-known examples available in the literature, namely a liquid drop with constant surface tension in a circular tube and a capsule with a very thin hyperelastic membrane in a square channel. We show that the numerical method exhibits second-order convergence in both time and space. To further demonstrate the accuracy and long-time numerically stable simulations of the algorithm, we perform hydrodynamic computations of a lipid vesicle with bending stiffness and a red blood cell with a composite membrane in capillaries. The present work offers some possibilities to study the deformation behavior of confining soft particles, especially the particles' shape transition and dynamics and their rheological signature in channel flows.
J. M. Lyu, Paul G. Chen, G. Boedec, M. Leonetti, M. Jaeger. An isogeometric boundary element method for soft particles flowing in microfluidic channels. Computers and Fluids, Elsevier, 2021, 214, pp.104786. ⟨10.1016/j.compfluid.2020.104786⟩. ⟨hal-02476945v2⟩
J. M. Lyu, Paul G. Chen, G. Boedec, M. Leonetti, M. Jaeger, et al.. An isogeometric boundary element method for soft particles flowing in microfluidic channels. Computers and Fluids, Elsevier, 2021, 214, pp.104786. ⟨10.1016/j.compfluid.2020.104786⟩. ⟨hal-03082862⟩ Plus de détails...
Understanding the flow of deformable particles such as liquid drops, synthetic capsules and vesicles, and biological cells confined in a small channel is essential to a wide range of potential chemical and biomedical engineering applications. Computer simulations of this kind of fluid-structure (membrane) interaction in low-Reynolds-number flows raise significant challenges faced by an intricate interplay between flow stresses, complex particles' interfacial mechanical properties, and fluidic confinement. Here, we present an isogeometric computational framework by combining the finite-element method (FEM) and boundary-element method (BEM) for an accurate prediction of the deformation and motion of a single soft particle transported in microfluidic channels. The proposed numerical framework is constructed consistently with the isogeometric analysis paradigm; Loop's subdivision elements are used not only for the representation of geometry but also for the membrane mechanics solver (FEM) and the interfacial fluid dynamics solver (BEM). We validate our approach by comparison of the simulation results with highly accurate benchmark solutions to two well-known examples available in the literature, namely a liquid drop with constant surface tension in a circular tube and a capsule with a very thin hyperelastic membrane in a square channel. We show that the numerical method exhibits second-order convergence in both time and space. To further demonstrate the accuracy and long-time numerically stable simulations of the algorithm, we perform hydrodynamic computations of a lipid vesicle with bending stiffness and a red blood cell with a composite membrane in capillaries. The present work offers some possibilities to study the deformation behavior of confining soft particles, especially the particles' shape transition and dynamics and their rheological signature in channel flows.
J. M. Lyu, Paul G. Chen, G. Boedec, M. Leonetti, M. Jaeger, et al.. An isogeometric boundary element method for soft particles flowing in microfluidic channels. Computers and Fluids, Elsevier, 2021, 214, pp.104786. ⟨10.1016/j.compfluid.2020.104786⟩. ⟨hal-03082862⟩
Cláudio Fonte, David Fletcher, Pierrette Guichardon, Joelle Aubin. Simulation of micromixing in a T-mixer under laminar flow conditions. Chemical Engineering Science, Elsevier, 2020, 222, pp.115706. ⟨10.1016/j.ces.2020.115706⟩. ⟨hal-02892241⟩ Plus de détails...
The CFD simulation of fast reactions in laminar flows can be computationally challenging due to the lack of appropriate sub-grid micromixing models in this flow regime. In this work, simulations of micromixing via the implementation of the competitive-parallel Villermaux/Dushman reactions in a T-micromixer with square bends for Reynolds numbers in the range 60–300 are performed using both a conventional CFD approach and a novel lamellae-based model. In the first, both the hydrodynamics and the concentration fields of the reaction species are determined directly using a finite volume approach. In the second, the hydrodynamic field from the CFD calculations is coupled with a Lagrangian model that is used to perform the chemical reactions indirectly. Both sets of results are compared with previously published experimental data and show very good agreement. The lamellar model has the advantage of being much less computationally intensive than the conventional CFD approach, which requires extremely fine computational grids to resolve sharp concentration gradients. It is a promising solution to model fast chemical reactions in reactors with complex geometries in the laminar regime and for industrial applications.
Cláudio Fonte, David Fletcher, Pierrette Guichardon, Joelle Aubin. Simulation of micromixing in a T-mixer under laminar flow conditions. Chemical Engineering Science, Elsevier, 2020, 222, pp.115706. ⟨10.1016/j.ces.2020.115706⟩. ⟨hal-02892241⟩
Jiupeng Du, Nelson Ibaseta, Pierrette Guichardon. Generation of an O/W emulsion in a flow-focusing microchip: importance of wetting conditions and of dynamic interfacial tension. Chemical Engineering Research and Design, Elsevier, 2020, ⟨10.1016/j.cherd.2020.04.012⟩. ⟨hal-02799613⟩ Plus de détails...
6 To date, there is no information on the microfluidic emulsification of dibutyl adipate and 7 n-butyl acetate in water. Since these solvents are very suitable for microencapsulation by 8 interfacial polymerization, it is highly necessary to study the emulsification behavior of these 9 solvents in microchannel. This work shows that the microfluidic emulsification of these sol-10 vents in water may fail to obtain stabilized flow regimes. This is due to droplet coalescence 11 and wall wetting, even if a hydrophilic microchip is used. Hydrodynamic results show that 12 squeezing and dripping regimes are especially affected because of the wall wetting by the 13 dispersed phase. This difficulty can be circumvented by adding a surfactant (here Tween 14 80) into the aqueous phase. However, high surfactant concentrations (ten times the crit-15 ical micelle concentration) should be used for the water-dibutyl adipate system. Indeed, 16 comparison of flow maps for several surfactant concentrations seems to indicate that the 17 dynamic interfacial tension is higher than the one expected (equilibrium), for surfactant 18 concentrations lower than one hundred times the critical micelle concentration. The esti-19 mated diffusion time of Tween 80 is compared to the droplet formation time at different 20 conditions. The choice of more appropriate dimensionless numbers to represent flow maps 21 is also discussed. 22
Jiupeng Du, Nelson Ibaseta, Pierrette Guichardon. Generation of an O/W emulsion in a flow-focusing microchip: importance of wetting conditions and of dynamic interfacial tension. Chemical Engineering Research and Design, Elsevier, 2020, ⟨10.1016/j.cherd.2020.04.012⟩. ⟨hal-02799613⟩
Kelly Ohanessian, Mathias Monnot, Philippe Moulin, Jean-Henry Ferrasse, Cristian Barca, et al.. Dead-end and crossflow ultrafiltration process modelling: Application on chemical mechanical polishing wastewaters. Chemical Engineering Research and Design, Elsevier, 2020, 158, pp.164-176. ⟨10.1016/j.cherd.2020.04.007⟩. ⟨hal-02892457⟩ Plus de détails...
Dynamic simulation of ultrafiltration process is applied to the treatment of chemical mechanical polishing wastewater from microelectronic industry. The ultrafiltration of nanoparticles (NPs) contained in chemical mechanical polishing wastewater is modelled by using different mathematical equations, which are derived from the literature and optimized to the effluent and filtration modes (dead-end or crossflow). A series of ultrafiltration experiments at laboratory scale are carried out by using chemical mechanical polishing wastewater to optimize and validate the models. Complete dead-end and crossflow ultrafiltration models are developed to simulate the treatment performances of chemical mechanical polishing wastewater under dynamic full-scale and different operating conditions, thus including filtration and washing steps. Simulations show that the dead-end mode is not suitable for chemical mechanical polishing wastewater concentration higher than 100 mgNPs L-1 due to the too fast fouling time and to the high frequency of washing step. The high concentration of chemical mechanical polishing P wastewater (2600 mgNPs L-1) forces industries to use crossflow ultrafiltration to have a profitable process by controlling parameters such as the filtration/backwashing number of cycles, the needed filtering surface and the filtration flux.
Kelly Ohanessian, Mathias Monnot, Philippe Moulin, Jean-Henry Ferrasse, Cristian Barca, et al.. Dead-end and crossflow ultrafiltration process modelling: Application on chemical mechanical polishing wastewaters. Chemical Engineering Research and Design, Elsevier, 2020, 158, pp.164-176. ⟨10.1016/j.cherd.2020.04.007⟩. ⟨hal-02892457⟩
Mardi 17 Décembre 2019
- Eco-design of a Dry Cleaning Machine by Integration of a Membrane Process for Solvent Dehydration / Soutenance de thèse Oleksandr DIMITROV
Doctorant : Oleksandr DIMITROV
Date de la soutenance : le 17 décembre 2019 à 10h30, Amphi 3, Centrale Marseille.
Jacques JOSE Professeur EM, Univ Lyon 1, Lyon Invité
Alfred TESTA Dirigéant, Innovaclean, Géménos Invité
Vendredi 5 Juillet 2019
- Modélisation numérique de la dynamique de particules molles en microcanaux / Soutenance de thèse de Jinming LYU
Doctorant : Jinming LYU
Date de la soutenance : Vendredi 5 Juillet 2019 à 14h00, Amphi 3A, Centrale Marseille
Résumé de la thèse :
Une vésicule est un système modèle utilisé pour comprendre le comportement dynamique en écoulement d’une particule molle fermée telle qu’un globule rouge. La membrane bicouche lipidique inextensible d’une vésicule admet une résistance d’élasticité en flexion. Lorsque dégonflée, c’est-à-dire pour un grand rapport surface sur volume, une vésicule présente des changements de formes remarquables. Des progrès significatifs ont été réalisés au cours des dernières décennies dans la compréhension de leur dynamique en milieu infini. Ce manuscrit s’intéresse à la transition de formes et à la migration latérale d’une vésicule dans des écoulements confinés. L’approche est numérique, basée sur une méthode aux éléments finis de frontière (BEM) isogéométrique. Partant d’une version existante pour les écoulements de Stokes non confiné, un code original est développé pour prendre en compte les parois de microcanaux de section transversale arbitraire. L’essentiel des études porte sur la dynamique d’une vésicule transportée par un écoulement de Poiseuille dans une conduite de section circulaire. Tout d’abord, nous examinons les formes typiques des vésicules, les différents modes de migration latérale et la structure de l’écoulement des lipides dans la membrane, en fonction des trois paramètres sans dimension caractéristiques : le volume réduit, le confinement et le nombre capillaire (de flexion). Les transitions de forme et le diagramme de phase de formes stables pour plusieurs volumes réduits sont obtenus dans l’espace (confinement, nombre capillaire). Ils montrent une extension de l’ensemble des morphologies de la vésicule. L’interaction complexe entre la paroi du tube, les contraintes hydrodynamiques et l’élasticité de flexion de la membrane conduit à une dynamique bien plus riche. Nous étudions ensuite, via une version axisymétrique du modèle, le comportement de la vésicule lorsque des conditions de confinement deviennent sévères et imposent des formes de vésicule axisymétriques. Un accent particulier est mis sur la prédiction de la mobilité de la vésicule et de la perte de charge additionnelle induite par la présence de la vésicule. Cette dernière est importante pour comprendre la rhéologie d’une suspension diluée. De plus, sur la base des résultats numériques du comportement proche du confinement maximal, nous établissons plusieurs lois d’échelle portant sur la vitesse de la vésicule et sa longueur, ainsi que sur l’épaisseur du film de lubrification. Enfin, nous présentons un modèle hybride BEM–coarse-graining permettant d’adjoindre un cytosquelette à une vésicule pour étendre nos études au cas des globules rouges. La modélisation coarse-graining du cytosquelette repose sur un réseau de ressorts identifié à l’ensemble des arêtes du maillage d’éléments finis de la membrane de la vésicule. Les résultats numériques montrent que ce modèle à deux composants vésicule–cytosquelette est capable d’extraire les propriétés mécaniques des globules rouges et de prédire sa dynamique dans les écoulements de fluide.
Jury
Annie VIALLAT DR CNRS, CINaM, Marseille Présidente
Chaouqi MISBAH DR CNRS, LIPhy, Grenoble Rapporteur
Franck NICOUD PR Univ. de Montpellier, Montpellier Rapporteur
Marc LEONETTI CR CNRS, LRP, Grenoble Examinateur
Marc JAEGER PR ECM, Marseille Directeur de thèse
Paul G. CHEN CR CNRS, M2P2, Marseille Co-Directeur de thèse