Instabilité, turbulence et contrôle

Ecoulements aérodynamiques

Ecoulements biologiques

Ecoulements pour la fusion magnétique

Hydrodynamique et transferts pariétaux

suite...

Présentation

L’équipe développe une expertise en simulation numérique et analyse prédictive d’écoulements dans des domaines d'applications centrés sur l’aéronautique, la fusion, les écoulements pulmonaires et les transferts hydrodynamiques. Des méthodes numériques innovantes et optimisées y sont développées pour répondre à des enjeux scientifiques fondamentaux, des applications industrielles, et des problématiques sociétales actuelles.
L’équipe compte actuellement 10 chercheurs et enseignants chercheurs, et se structure autour de 4 axes de recherche :

Responsable

x >

Annuaire personnel permanent

x >

Doctorants, Post-Doctorants et CDD

x >

Dernières publications de l'équipe

  • E. Laribi, E. Serre, P. Tamain, H. Yang. Impact of negative triangularity on edge plasma transport and turbulence in TOKAM3X simulations. Nuclear Materials and Energy, Elsevier, 2021, pp.101012. ⟨10.1016/j.nme.2021.101012⟩. ⟨hal-03214958⟩ Plus de détails...
  • Isabelle Cheylan, Song Zhao, Pierre Boivin, Pierre Sagaut. Compressible pressure-based Lattice-Boltzmann applied to humid air with phase change. Applied Thermal Engineering, Elsevier, 2021, pp.116868. ⟨10.1016/j.applthermaleng.2021.116868⟩. ⟨hal-03180596⟩ Plus de détails...
  • Simon Gsell, Umberto D'ortona, Julien Favier. Lattice-Boltzmann simulation of creeping generalized Newtonian flows: theory and guidelines. Journal of Computational Physics, Elsevier, 2021, 429, pp.109943. ⟨10.1016/j.jcp.2020.109943⟩. ⟨hal-03166492⟩ Plus de détails...
  • B Dudson, W Gracias, R Jorge, A Nielsen, J Olsen, et al.. Edge turbulence in ISTTOK: a multi-code fluid validation. Plasma Physics and Controlled Fusion, IOP Publishing, 2021. ⟨hal-03179634⟩ Plus de détails...
  • Raffaele Tatali, Eric Serre, Patrick Tamain, Davide Galassi, Philippe Ghendrih, et al.. Impact of collisionality on turbulence in the edge of tokamak plasma using 3D global simulations. Nuclear Fusion, IOP Publishing, 2021, ⟨10.1088/1741-4326/abe98b⟩. ⟨hal-03182318⟩ Plus de détails...
x >

Dernières rencontres scientifiques

Soutenances de thèses et HDR

20 juillet 2021 - Numerical modeling of an in-vessel ow limiter using an immersed boundary approach / PhD defense Georis Billo
Doctorant : Georis BILLO

Date de soutenance : le 20 juillet 2021 à 9h00 ; Amphi 3 Centrale Marseille

Abstract : In the framework of the development of new passive safety systems for the second and third generations of nuclear reactors, the numerical simulations, involving complex turbulent two-phase  flows around thin or massive in flow obstacles are privileged tools to model, optimize and assess new design shapes. In order to match industrial demands, computational  fluid dynamics tools must be the fastest, most accurate and most robust possible. The purpose of my PhD was to design and develop such a tool.
   The aforementioned constaints tend to rule out a "body-fitted". Indeed, we chose a Fictitious Domain approach to deal with this problem. More precisely, the developed tool involves solving the Navier-Stokes equations using a projection scheme for a mixture fluid coupled with an Immersed Boundary (IB) approach: the penalized direct forcing method - a technique whose characteristics inherit from both penalty and immersed boundary methods - adapted to in finitely thin obstacles and to a Finite Element (FE) formulation. Various IB conditions (slip, no-slip or Neumann) for the velocity on the IB can be managed by imposing Dirichlet values in the vicinity of the thin obstacles. To deal with these imposed Dirichlet velocities, we investigated two variants: one in which we directly use the obstacle velocity and another one in which we use linear interpolation (this last variant being motivated by an increase of the space order of convergence). Several approaches were investigated (directional, mutli-directional and hybrid) for the linear interpolation of the velocity near the obstacle but, in any case, geometrical data coming from the obstacle are needed. Thus, retrieving geometrical data, generally from a Computer Assisted Design (CAD) object, is a key issue and, once again, several methods were studied and compared.
   Another major issue, when dealing with numerical simulations, is validation. First, studies involving various one-phase academic test cases (such as Poiseuille, Taylor-Couette and the  flow around a circular cylinder) were carried out. The results obtained were in good agreement with analytical and experimental data. Moreover, second order accuracy (in space) was numerically assessed when using linear interpolation, as expected. Then, studies involving industrial or quasi-industrial test cases were carried out to illustrates the advantages and drawbacks of this approach.
   In a shortcoming second step, to face two-phase turbulent fluid simulations, some methodology modi cations will be considered such as adapting the projection scheme to low-compressible  fluid and immersed wall-law boundary conditions (another PhD project has begun in october 2020).

Jury :

o   Michel Belliard, CEA Cadarache, ingénieur-chercheur, HDR, encadrant
o   Pierre Sagaut, M2P2 (AMU), professeur, directeur de thèse
o   Cédric Galusinski, IMATH (Université de Toulon), professeur, examinateur     
o   Lisl Weynans, INRIA (Université de Bordeaux), professeure assistant, HDR, rapporteure
o   Stéphane Vincent, MSME (Université Gustave-Eiffel), professeur, rapporteur
o   Barbara Bigot, CEA Cadarache, ingénieur-chercheur, examinatrice
17 Juin 2021 - Amélioration de la méthode de Boltzmann sur réseau pour réaliser des simulations aéroacoustiques avec des maillages non-uniformes: Application à la prédiction du bruit de train d'atterrissage / Soutenance de Thèse Thomas Astoul
Doctorant : Thomas ASTOUL

Date de soutenance : jeudi 17 juin 2021 à 14:00 ;  CERFACS, 42 Avenue Gaspard Coriolis, 31100 Toulouse ; Webex 

Résumé : la prédiction de bruit de train d'atterrissage est un enjeu majeur pour un constructeur aéronautique, puisqu'il contribue à environ 40% du bruit total de l'aéronef lors des phases d'approche. Les essais en vol et ceux réalisés en souffleries anéchoïques ont permis de comprendre les mécanismes de génération du bruit, ainsi que de développer des dispositifs permettant de le réduire. Cependant, ces méthodes sont très longues et coûteuses à mettre en oeuvre. Les méthodes de simulation numériques (CFD) émergent ainsi comme un complément essentiel à ces approches expérimentales. L'écoulement autour des trains d'atterrissage est complexe et fortement instationnaire, et le bruit généré est de nature large bande. De part ces caractéristiques, il est nécessaire de se tourner vers des méthodes instationnaires de modélisation de la turbulence, comme la simulation aux grandes échelles (LES), pour prédire ces sources acoustiques. La méthode de Boltzmann sur réseau (LBM) est une méthode numérique qui a récemment montré un fort potentiel pour ce type d'applications, grâce à sa précision, son faible temps de restitution et sa capacité à gérer des géométries complexes, et de ce fait, est adoptée pour cette thèse. Les simulations aéroacoustiques nécessitent une grande précision puisque les fluctuations acoustiques, qui sont de plusieurs ordres de grandeur inférieures aux fluctuations aérodynamiques, doivent être correctement capturées et propagées. Néanmoins, les raccords de maillages non conformes utilisés en LBM ont l'inconvénient de générer de la vorticité et de l'acoustique parasites se propageant au coeur du fluide, au risque d'affecter les prédictions de bruit. L'objectif de cette thèse est de développer de nouveaux modèles de transition de maillage dans le code LBM "LaBS/proLB", et de les valider sur des cas d'application d'aéroacoustique de train d'atterrissage. Deux axes principaux sont étudiés pour remédier à ces phénomènes : 1/ Une étude du schéma numérique au coeur du fluide est effectuée, mettant en exergue la responsabilité des modes non-hydrodynamiques, spécifiques à la LBM, dans la génération de vorticité et d'une portion de l'acoustique parasite émise aux raccords de maillages. Après une étude approfondie de l'implication de ces modes, un modèle de collision approprié (H-RR) est sélectionné pour filtrer ces derniers lors d'une simulation. La stabilité et la précision de ce modèle ainsi que d'autres schémas LBM dans des conditions typiques de simulations aéroacoustiques sont également investiguées. Cette étude met en évidence des problèmes de stabilité, ainsi qu'une précision discutable de nombreux schémas LBM avancés disponibles dans la littérature. 2/ Un algorithme de couplage direct entre deux grilles de résolution différentes est proposé. Cet algorithme permet de grandement améliorer la précision des raccords non-conformes et, de ce fait, de réduire l'émission acoustique parasite produite par la traversée de ces interfaces par des tourbillons composant les sillages. Enfin, le train d'atterrissage LAGOON permet de valider ces ingrédients numériques. Une étude aérodynamique puis aéroacoustique via un couplage avec un code de propagation acoustique basé sur l'analogie de Ffowcs Williams and Hawkings (FW-H) sont menées. Les limites de cette analogie dans sa formulation solide, généralement utilisée pour prédire le bruit de train d'atterrissage, sont soulignées. Enfin, l'effet de composants additionnels de complexité croissante sur le bruit généré est étudié. 

Jury :
Directeur de these     M. Pierre SAGAUT     Aix Marseille Université
Rapporteur     M. Damiano CASALINO     Université de technologie de Delft
Rapporteur     M. Jonas LATT     Université de Genève
Examinateur     M. Alois SENGISSEN     Airbus Operations SAS
Examinateur     M. Eric MANOHA     ONERA
Examinateur     M. Stéphane MOREAU     Université de Sherbrooke
Examinateur     Mme Véronique FORTUNé     Université de Poitiers
29 Mars 2021 - Impact of coliisionality on the transport and turbulence properties at the plasma edge of a tokamak / PhD defense Raffaelle Tatali
Doctorant : Raffaelle TATALI

Date de soutenance :  le 29 Mars 2021 à 9h30 en visio

Abstract : Predictive simulations of plasma edge and plasma-wall interaction in tokamaks are necessary for the future working of ITER, but nowadays they still require more work. Collisionality is one of the key parameters in determining turbulent transport in the plasma edge, regulating phenomena such as ”shoulder formation”, separation of scale lengths in the scrape-off layer, turbulence damping and zonal flow dynamics. Understanding its role is therefore of primary importance for future reactors like ITER. Obtaining reliable predictions and a better characterization of plasma flow properties when varying collisionality remains, however, a critical challenge for the simulations. This PhD thesis focuses on the impact of varying collisionality in a nonisothermal three-dimensional fluid model in the plasma edge of a high field side limited configuration with parameters typical of a medium-sized tokamak. Details on mean flow and turbulence properties of a non-isothermal edge plasma encompassing open and closed field lines are given. The results obtained show that changing collisionality leads to significant changes in the flow properties both on the mean and fluctuating quantities. In particular, lowering collisionality decreases the size of coherent structures, the fluctuation levels of turbulence, and steepens the density and temperature equilibrium profiles around the separatrix leading to a global reduction of the turbulent transport. The scrape-off layer (SOL) width is observed to increase with collisionality, eventually resulting in the disappearance of the scale lengths separation between near and far SOL, consistently with previous experimental observations. At low collisionality, where the presence of narrow feature is well-established, a contribution of heat conduction increases up to compete with heat convection.

Jury

M. Rasmussen Jens ( Professeur émérite Denmark Technical University ) Rapporteur
M. Vianello Nicola ( Directeur de recherche Italian National Research Council )   Rapporteur 
M. Theiler Christian ( Professeur assistant EPFL ) 
Mme Vermare Laure ( Chargée de recherche LPP-CNRS ) 
M. Tamain Patrick ( Ingénieur de recherche CEA-IRFM )
M. Ghendrih Philippe ( Directeur de recherche CEA-IRFM  ) 
M. Ciraolo Guido ( Ingénieur de recherche CEA-IRFM  ) 
M. Serre Eric ( Directeur de recherche CNRS-M2P2  )   Direction de thèse