traitement des eaux et déchets

Procédés biologiques

Procédés thermiques

Outils et Approches transverses

suite...

Présentation
Approche Globale du Cycle de l’Eau

Les travaux de l’équipe Traitement des Eaux et Déchets (TED) sont organisés autour d’une vision globale intégrée du traitement et de la valorisation des eaux usées et des déchets.

Cette approche systémique s’appuie sur une démarche couplée expérimentation-modélisation-simulation des procédés, pour traiter, réutiliser et valoriser des effluents urbains ou industriels (production d’H2, de CH4, de chaleur ; récupération des nutriments, des métaux, reuse, etc). Elle vise à contribuer aux grands enjeux du 21ème siècle et plus particulièrement aux transitions écologique et énergétique.

A cet effet, l’équipe développe des approches multi-échelles de traitement et de valorisation des effluents liquides et solides en suspension.

A l’échelle de la matière, l’équipe possèdes les compétences pour des caractérisations spécifiques que sont la rhéologie et la bio-calorimétrie.

A l’échelle du procédé, les études se focalisent sur l’application de mécanismes novateurs que ce soit en réacteur biologique, thermique ou physico-chimique. La caractérisation des grandeurs de transfert, matière et cinétique mène au développement de modèles dédiés.

Ces modèles sont utilisés au sein de méthodologies intégratives spécifiques dès lors que deux ou plusieurs procédés sont couplés. Ces méthodes sont développées pour déterminer le fonctionnement optimal du couplage et/ou du site industriel accueillant ces procédés.

Les thématiques développées dans l’équipe TED s’articulent autour des trois axes suivants :

Axe Dépollution 

dédié au dimensionnement de procédés de traitement des eaux et des déchets ainsi qu’à la compréhension des mécanismes de transfert et processus réactionnels mis en jeu.

Sous-axes : bioréacteurs, filtres réactifs, OVH, gazéification, rhéologie, calorimétrie

Axe Valorisation 

dans lequel les études sont consacrées à l’optimisation des processus et procédés pour la valorisation matière et/ou énergie des effluents et des déchets (récupération de phosphore, production de vecteurs énergétiques : H2, CH4, etc)

Sous-axes : cristallisation, bioH2 et vecteurs énergétiques à partir de biomasse, récupération des nutriments, etc

Axe Intégration 

focalisé sur l’étude du couplage des procédés développés dans l’équipe associée à une démarche d’optimisation des flux par des méthodes ad hoc de type symbiose industrielle.

Sous-axes : couplage de procédés, optimisation énergétique, etc

Responsable

x >

Annuaire personnel permanent

x >

Doctorants, Post-Doctorants et CDD

x >

Equipements

- Rhéomètre TA Instrument (géométries : couette, double-couette, ruban, plan-plan, cône-plan)
- Calorimètre SETARAM C80
- Spectromètre IR
- Chromatographe gaz
- Pilote de Gazéification
- Banc de caractérisation di et triphasique des propriétés rhéologiques
- Rhéoreacteur
- Pilote de biofiltre immergé aéré à membranes
- Banc de caractérisation de la pollution des eaux (DCO, DBO5, MES, MVS, NH4+, NO3- …)
- Réacteur calorimétrique
- Bioréacteurs à biofilm (aérobies et anaérobies)

Partenaires académiques et industriels

Collaborations Internationales avec

Institut Mexicain du Pétrole / Université de Monastir / Université de Sfax / Université de Gand

 

Collaborations Nationales 

Industrielles :

Véolia Environnement / Groupe Lesaffre / CIRAD / Phytorem SA / G2C Environnement / Phocéenne des Eaux / CICL / Sterlab

Académiques - Institutionnelles :

Région PACA / IFR PMSE / FR ECCOREV / CEMAGREF / ISM2 / CEREGE / INRA / IRD

 

Dernières publications de l'équipe

  • David Ranava, Cassandra Backes, Ganesan Karthikeyan, Olivier Ouari, Audrey Soric, et al.. Metabolic Exchange and Energetic Coupling between Nutritionally Stressed Bacterial Species: Role of Quorum-Sensing Molecules. mBio, 2021, 12 (1), pp.e02758-20. ⟨10.1128/mBio.02758-20⟩. ⟨hal-03115469⟩ Plus de détails...
  • Nicolas Lusinier, Isabelle Seyssiecq, Cecilia Sambusiti, Matthieu Jacob, Nicolas Lesage, et al.. A comparative study of conventional activated sludge and fixed bed hybrid biological reactor for oilfield produced water treatment: influence of hydraulic retention time. Chemical Engineering Journal, Elsevier, 2020, pp.127611. ⟨10.1016/j.cej.2020.127611⟩. ⟨hal-02989059⟩ Plus de détails...
  • Jiupeng Du, Nelson Ibaseta, Pierrette Guichardon. Generation of an O/W emulsion in a flow-focusing microchip: importance of wetting conditions and of dynamic interfacial tension. Chemical Engineering Research and Design, Elsevier, 2020, ⟨10.1016/j.cherd.2020.04.012⟩. ⟨hal-02799613⟩ Plus de détails...
  • Kelly Ohanessian, Mathias Monnot, Philippe Moulin, Jean-Henry Ferrasse, Cristian Barca, et al.. Dead-end and crossflow ultrafiltration process modelling: Application on chemical mechanical polishing wastewaters. Chemical Engineering Research and Design, Elsevier, 2020, 158, pp.164-176. ⟨10.1016/j.cherd.2020.04.007⟩. ⟨hal-02892457⟩ Plus de détails...
  • Xiaotong Zhan, Sabine Michaud-Chevallier, Damien Hérault, Françoise Duprat. On-Line Analysis of the Heterogeneous Pd-Catalyzed Transfer Hydrogenation of p -Nitrophenol in Water with Formic Acid in a Flow Reactor. Organic Process Research and Development, American Chemical Society, 2020, 24 (5), pp.686-694. ⟨10.1021/acs.oprd.9b00291⟩. ⟨hal-02611832⟩ Plus de détails...
x >

Rencontres scientifiques

Soutenances de thèses et HDR

Jeudi 10 décembre - Recherche d’optimum de conversion de la biomasse et optimisation de la répartition d’entropie dans un réacteur, deux contributions au développement des bio-raffineries/ Soutenance de thèse Jonathan GOFFE
Doctorant :  Jonathan GOFFE            
  
Date de la soutenance :  visioconférence le jeudi 10 décembre à 10 h.

Résumé : 

L’optimisation des processus à grande échelle, la réduction des irréversibilités lors des différentes transformations, ainsi que les changements stratégiques majeurs dans le choix des ressources et des applications sont des étapes clés de la transformation du modèle énergétique mondial. En contribuant d’une part à développer des outils d’évaluation théorique de la conversion de la biomasse ce travail fournit des critères permettant d’identifier les limites supérieures théoriques de la conversion de la biomasse. La conversion de deux biomasses (lignocellulosique et microalgue) en alcanes, alcools, monoxyde de carbone ou hydrogène est réalisée. Elle souligne l’importance de la stœchiométrie dans la faisabilité et l’efficacité des conversions. D’autre part ce travail contribue au domaine de l’optimisation des procédés par la réduction des irréversibilités. Le fonctionnement d’un réacteur tubulaire a été étudié en mesurant l’impact de la géométrie. Le procédé de reformage du méthane à la vapeur sert de cas modèle. Une proposition d’équipartition de la production d’entropie à été proposé à partir d’une décomposition en sous réacteurs. 

Mots clés : Biomasse, conversion de la biomasse, Analyse Pinch, Matlab, equipartition, création d’entropie, réacteur tubulaire, reformage du méthane à la vapeur 

Jury :

  Dr Raphaele THÉRY HÉTREUX
     Maitre de conférences HDR, LGC, INPT Toulouse, Rapportrice
  Pr Guillain MAUVIEL
     Professeur des Universités, LRGP Nancy, Université de Lorraine, Rapporteur
  Dr Nathalie MAZET
     Directeur de recherche, CNRS, PROMES, Université de Perpignan Via Domitia, Examinatrice
  Dr Lingai LUO
     Directeur de recherche, CNRS, Laboratoire de Thermique et Énergie, Université de Nantes, Examinatrice
  Dr Jean-Henry FÉRRASSE
     Maître de Conférences HDR, M2P2, Aix Marseille Université, Directeur de thèse
Jeudi 7 mai 2020 à 10h par vidéoconférence - Développement d’une méthodologie facilitant l’identification et l’évaluation de symbioses industrielles dans le secteur de l’industrie pétrochimique / Soutenance de thèse Hélène CERVO
Doctorant : Hélène CERVO               
  
Date de la soutenance :  jeudi 7 mai 2020 à 10h par vidéoconférence

Résumé : 

Les symbioses industrielles permettent de créer de nouvelles collaborations entre différentes entités d’un même territoire afin d’échanger des ressources telles que des matières premières, de l’énergie, de l’information et des déchets, et d’intensifier les mutualisations de services et d’infrastructures. Ces dernières années, de nombreuses mesures ont ainsi été prises, favorisant et encourageant de telles initiatives. Néanmoins, certaines problématiques perdurent encore quant à leur mise en place et à leur démocratisation. Cette thèse se concentre sur une des problématiques principales de la symbiose industrielle : le manque de partage des informations. Les travaux de recherche s’articulent donc autour de la question suivante :

Comment formaliser l’échange d’informations entre partenaires industriels dans le but de faciliter la détection et l’évaluation des symbioses industrielles ?

Le concept de blueprint est développé et proposé comme solution facilitant l’échange de données entre partenaires industriels. Le blueprint est une représentation générique d’un procédé industriel donné. Une méthodologie détaillée, décrivant la construction du blueprint, la définition des flux qu’il contient, ainsi que la visualisation des profils le constituant, est également présentée. Celle-ci est appliquée à un système industriel de grande envergure : une raffinerie, démontrant sa faisabilité. Enfin, plusieurs exemples d’utilisation du blueprint dans un contexte de symbiose industrielle sont développés. Ils permettent de comprendre dans quel cadre plusieurs blueprints peuvent être combinés, et mettent en évidence la pertinence de la méthode ainsi que les limites de son utilisation.    

Jury: 

Prof. François MARECHAL   / École Polytechnique Fédérale de Lausanne -> Président du jury
Prof. Ronny VERHOEVEN   / Ghent University -> Vice président du jury
Prof. Simon HARVEY / Chalmers University of Technolog-> Rapporteur
Prof. Raphaële THERY HETREUX / INP Toulouse     -> Rapporteur
Prof. Lieven VANDEVELDE  /  Ghent University  -> Rapporteur
Prof. Olivier BOUTIN  /  Aix-Marseille Université  -> Examinateur
Dr. Bernard DESCALES / INEOS -> Invité
Dr. Solène LE BOURDIEC / EDF -> Invité
Prof. Jean-Henry FERRASSE / Aix-Marseille Université -> Directeur de thèse
Prof. Greet VAN EETVELDE  /  Ghent University -> Directeur de thèse