Méthodes LBM pour les écoulements à phases multiples
Publications scientifiques au M2P2
2020
S. Guo, Yongliang Feng, Jérôme Jacob, F. Renard, Pierre Sagaut. An efficient lattice Boltzmann method for compressible aerodynamics on D3Q19 lattice. Journal of Computational Physics, Elsevier, 2020, 418, pp.109570. ⟨10.1016/j.jcp.2020.109570⟩. ⟨hal-02960161⟩ Plus de détails...
An efficient lattice Boltzmann (LB) model relying on a hybrid recursive regularization (HRR) collision operator on D3Q19 stencil is proposed for the simulation of three-dimensional high-speed compressible flows in both subsonic and supersonic regimes. An improved thermal equilibrium distribution function on D3Q19 lattice is derived to reduce the complexity of correcting terms. A simple shock capturing scheme and an upwind biased discretization of correction terms are implemented for supersonic flows with shocks. Mass and momentum equations are recovered by an efficient streaming, collision and forcing process on D3Q19 lattice. Then a non-conservative formulation of the entropy evolution equation is used, that is solved using a finite volume method. The proposed method is assessed considering the simulation of i) 2D isentropic vortex convection, ii) 3D non-isothermal acoustic pulse, iii) 2D supersonic flow over a bump, iv) 3D shock explosion in a box, v) 2D vortex interaction with shock wave, vi) 2D laminar flows over a flat plate at Ma of 0.5, 1.0 and 1.5.
S. Guo, Yongliang Feng, Jérôme Jacob, F. Renard, Pierre Sagaut. An efficient lattice Boltzmann method for compressible aerodynamics on D3Q19 lattice. Journal of Computational Physics, Elsevier, 2020, 418, pp.109570. ⟨10.1016/j.jcp.2020.109570⟩. ⟨hal-02960161⟩
Y. Feng, S. Guo, J. Jacob, P. Sagaut. Grid refinement in the three-dimensional hybrid recursive regularized lattice Boltzmann method for compressible aerodynamics. Physical Review E , American Physical Society (APS), 2020, 101 (6), pp.063302. ⟨10.1103/PhysRevE.101.063302⟩. ⟨hal-02892273⟩ Plus de détails...
Grid refinement techniques are of paramount importance for computational fluid dynamics approaches relying on the use of Cartesian grids. This is especially true of solvers dedicated to aerodynamics, in which the capture of thin shear layers require the use of small cells. In this paper, a three-dimensional grid refinement technique is developed within the framework of hybrid recursive regularized lattice Boltzmann method (HRR-LBM) for compressible high-speed flows, which is an efficient collide-stream-type method on a compact D3Q19 stencil. The proposed method is successfully assessed considering several test cases, namely, an isentropic vortex propagating through transition interface, shock-vortex interaction with intersection between grid refinement interface and shock corrugation, and transonic flows over three-dimensional DLR-M6 wing with seven levels of grid refinement.
Y. Feng, S. Guo, J. Jacob, P. Sagaut. Grid refinement in the three-dimensional hybrid recursive regularized lattice Boltzmann method for compressible aerodynamics. Physical Review E , American Physical Society (APS), 2020, 101 (6), pp.063302. ⟨10.1103/PhysRevE.101.063302⟩. ⟨hal-02892273⟩
P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, et al.. SciPy 1.0: fundamental algorithms for scientific computing in Python: 24 February 2020 : An amendment to this paper has been published and can be accessed via a link at the top of the paper.. Nature Methods, 2020, 17, pp.261-272. ⟨10.1038/s41592-019-0686-2⟩. ⟨hal-02520043⟩ Plus de détails...
SciPy is an open-source scientific computing library for the Python programming language. Since its initial release in 2001, SciPy has become a de facto standard for leveraging scientific algorithms in Python, with over 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories and millions of downloads per year. In this work, we provide an overview of the capabilities and development practices of SciPy 1.0 and highlight some recent technical developments. 24 February 2020 : An amendment to this paper has been published and can be accessed via a link at the top of the paper.
P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, et al.. SciPy 1.0: fundamental algorithms for scientific computing in Python: 24 February 2020 : An amendment to this paper has been published and can be accessed via a link at the top of the paper.. Nature Methods, 2020, 17, pp.261-272. ⟨10.1038/s41592-019-0686-2⟩. ⟨hal-02520043⟩
M. Tayyab, S. Zhao, Y. Feng, Pierre Boivin. Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes. Combustion and Flame, Elsevier, 2020, 211, pp.173-184. ⟨10.1016/j.combustflame.2019.09.029⟩. ⟨hal-02346556⟩ Plus de détails...
A Lattice-Boltzmann model for low-Mach reactive flows is presented, built upon our recently published model (Comb & Flame, 196, 2018). The approach is hybrid and couples a Lattice-Boltzmann solver for the resolution of mass and momentum conservation and a finite difference solver for the energy and species conservation. Having lifted the constant thermodynamic and transport properties assumptions, the model presented now fully accounts for the classical reactive flow thermodynamic closure: each component is assigned NASA coefficients for calculating its thermodynamic properties. A temperature-dependent viscosity is considered, from which are deduced thermo-diffusive properties via specification of Prandtl and component-specific Schmidt numbers. Another major improvement from our previous contribution is the derivation of an advanced collision kernel compatible of multi-component reactive flows stable in high shear flows. Validation is carried out first on premixed configurations, through simulation of the planar freely propagating flame, the growth of the associated Darrieus-Landau instability and three regimes of flame-vortex interaction. A double shear layer test case including a flow-stabilized diffusion flame is then presented and results are compared with DNS simulations, showing excellent agreement.
M. Tayyab, S. Zhao, Y. Feng, Pierre Boivin. Hybrid regularized Lattice-Boltzmann modelling of premixed and non-premixed combustion processes. Combustion and Flame, Elsevier, 2020, 211, pp.173-184. ⟨10.1016/j.combustflame.2019.09.029⟩. ⟨hal-02346556⟩
Yongliang Feng, S. Guo, Jérôme Jacob, Pierre Sagaut. Solid wall and open boundary conditions in hybrid recursive regularized lattice Boltzmann method for compressible flows. Physics of Fluids, American Institute of Physics, 2019, 31 (12), pp.126103. ⟨10.1063/1.5129138⟩. ⟨hal-02467965⟩ Plus de détails...
Complex geometries and open boundaries have been intensively studied in the nearly incompressible lattice Boltzmann method (LBM) framework. Therefore, only few boundary conditions for the high speed fully compressible LBM have been proposed. This paper deals with the definition of efficient boundary conditions for the compressible LBM methods, with the emphasis put on the newly proposed hybrid recursive regularized D3Q19 LBM (HRR-LBM) with applications to compressible aerodynamics. The straightforward simple extrapolation-based far-field boundary conditions, the characteristic boundary conditions, and the absorbing sponge layer approach are extended and estimated in the HRR-LBM for the choice of open boundaries. Moreover, a cut-cell type approach to handle the immersed solid is proposed to model both slip and no-slip wall boundary conditions with either isothermal or adiabatic behavior. The proposed implementations are assessed considering the simulation of (i) isentropic vortex convection with subsonic to supersonic inflow and outflow conditions, (ii) two-dimensional (2D) compressible mixing layer, (iii) steady inviscid transonic flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil, (iv) unsteady viscous transonic flow over a NACA 0012 airfoil, and (v) three-dimensional (3D) transonic flows over a German Aerospace Center (DLR) F6 full aircraft configuration.
Yongliang Feng, S. Guo, Jérôme Jacob, Pierre Sagaut. Solid wall and open boundary conditions in hybrid recursive regularized lattice Boltzmann method for compressible flows. Physics of Fluids, American Institute of Physics, 2019, 31 (12), pp.126103. ⟨10.1063/1.5129138⟩. ⟨hal-02467965⟩
Yongliang Feng, Pierre Boivin, Jérome Jacob, Pierre Sagaut. Hybrid recursive regularized lattice Boltzmann simulation of humid air with application to meteorological flows. Physical Review E , American Physical Society (APS), 2019. ⟨hal-02265484⟩ Plus de détails...
An extended version of the hybrid recursive regularized Lattice-Boltzmann model which incorporates external force is developed to simulate humid air flows with phase change mechanisms under the Boussinesq approximation. Mass and momentum conservation equations are solved by a regu-larized lattice Boltzmann approach well suited for high Reynolds number flows, whereas the energy and humidity related equations are solved by a finite volume approach. Two options are investigated to account for cloud formation in atmospheric flow simulations. The first option considers a single conservation equation for total water and an appropriate invariant variable of temperature. In the other approach, liquid and vapor are considered via two separated equations, and phase transition is accounted for via a relaxation procedure. The obtained models are then systematically validated on four well-established benchmark problems including a double diffusive Rayleigh Bénard convection of humid air, 2D and 3D thermal moist rising bubble under convective atmospheric environment as well as a shallow cumulus convection in framework of large-eddy simulation.
Yongliang Feng, Pierre Boivin, Jérome Jacob, Pierre Sagaut. Hybrid recursive regularized lattice Boltzmann simulation of humid air with application to meteorological flows. Physical Review E , American Physical Society (APS), 2019. ⟨hal-02265484⟩
Yongliang Feng, Pierre Boivin, Jérome Jacob, Pierre Sagaut. Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows. Journal of Computational Physics, Elsevier, 2019, 394, pp.82-99. ⟨hal-02142837⟩ Plus de détails...
A thermal lattice Boltzmann model with a hybrid recursive regularization (HRR) collision operator is developed on standard lattices for simulation of subsonic and sonic compressible flows without shock. The approach is hybrid: mass and momentum conservation equations are solved using a lattice Boltzmann solver, while the energy conservation is solved under entropy form with a finite volume solver. The defect of Galilean invariance related to Mach number is corrected by the third order equilibrium distribution function , supplemented by an additional correcting term and hybrid recursive regularization. The proposed approach is assessed considering the simulation of i) an isentropic vortex convection, ii) a two dimensional acoustic pulse and iii) non-isothermal Gaussian pulse with Ma number in range of 0 to 1. Numerical simulations demonstrate that the flaw in Galilean invari-ance is effectively eliminated by the compressible HRR model. At last, the compressible laminar flows over flat plate at Ma number of 0.3 and 0.87, Reynolds number of 10 5 are considered to validate the capture of viscous and diffusive effects.
Yongliang Feng, Pierre Boivin, Jérome Jacob, Pierre Sagaut. Hybrid recursive regularized thermal lattice Boltzmann model for high subsonic compressible flows. Journal of Computational Physics, Elsevier, 2019, 394, pp.82-99. ⟨hal-02142837⟩
Yongliang Feng, Muhammad Tayyab, Pierre Boivin. A Lattice-Boltzmann model for low-Mach reactive flows. Combustion and Flame, Elsevier, 2018, 196, pp.249 - 254. ⟨10.1016/j.combustflame.2018.06.027⟩. ⟨hal-01832640⟩ Plus de détails...
A new Lattice-Boltzmann model for low-Mach reactive flows is presented. Based on standard lattices, the model is easy to implement, and is the first, to the authors' knowledge, to pass the classical freely propagating flame test case as well as the counterflow diffusion flame, with strains up to extinction. For this presentation, simplified transport properties are considered, each species being assigned a separate Lewis number. In addition, the gas mixture is assumed to be calorically perfect. Comparisons with reference solutions show excellent agreement for mass fraction profiles, flame speed in premixed mixtures, as well as maximum temperature dependence with strain rate in counterflow diffusion flames.
Yongliang Feng, Muhammad Tayyab, Pierre Boivin. A Lattice-Boltzmann model for low-Mach reactive flows. Combustion and Flame, Elsevier, 2018, 196, pp.249 - 254. ⟨10.1016/j.combustflame.2018.06.027⟩. ⟨hal-01832640⟩
Yongliang Feng, Pierre Sagaut, Wen-Quan Tao. A compressible lattice Boltzmann finite volume model for high subsonic and transonic flows on regular lattices. Computers and Fluids, Elsevier, 2016, 131, pp.45-55. ⟨10.1016/j.compfluid.2016.03.009⟩. ⟨hal-01461781⟩ Plus de détails...
A multi-dimensional double distribution function thermal lattice Boltzmann model has been developed to simulate fully compressible flows at moderate Mach number. The lattice Boltzmann equation is temporally and spatially discretizated by an asymptotic preserving finite volume scheme. The micro-velocities discretization is adopted on regular low-symmetry lattices (D1Q3, D2Q9, D3Q15, D3Q19, D3Q27). The third-order Hermite polynomial density distribution function on low-symmetry lattices is used to solve the flow field, while a second-order energy distribution is employed to compute the temperature field. The fully compressible Navier-Stokes equations are recovered by standard order Gauss-Hermite polynomial expansions of Maxwell distribution with cubic correction terms, which are added by an external force expressed in orthogonal polynomials form. The proposed model is validated considering several benchmark cases, namely the Sod shock tube, thermal Couette flow and two-dimensional Riemann problem. The numerical results are in very good agreement with both analytical solution and reference results. (C) 2016 Elsevier Ltd. All rights reserved.
Yongliang Feng, Pierre Sagaut, Wen-Quan Tao. A compressible lattice Boltzmann finite volume model for high subsonic and transonic flows on regular lattices. Computers and Fluids, Elsevier, 2016, 131, pp.45-55. ⟨10.1016/j.compfluid.2016.03.009⟩. ⟨hal-01461781⟩
Yongliang Feng, Pierre Sagaut, Wenquan Tao. A three dimensional lattice model for thermal compressible flow on standard lattices. Journal of Computational Physics, Elsevier, 2015, 303, pp.514-529. ⟨10.1016/j.jcp.2015.09.011⟩. ⟨hal-01276507⟩ Plus de détails...
A three-dimensional double distribution function thermal lattice Boltzmann model has been developed for simulation of thermal compressible flows in the low Mach number limit. Both the flow field and energy conservation equation are solved by LB approach. A higher order density distribution function on standard lattices is used to solve the flow field, while an energy distribution function is employed to compute the temperature field. The equation of state of thermal perfect gas is recovered by higher order Hermite polynomial expansions in Navier–Stokes–Fourier equations. The equilibrium distribution functions of D3Q15, D3Q19 and D3Q27 lattices are obtained from the Hermite expansion. They exhibit slight differences originating in differences in the discrete lattice symmetries. The correction terms in LB models for third order derivation are added using an external force in orthogonal polynomials form. Present models are successfully assessed considering several test cases, namely the thermal Couette flow, Rayleigh–Bénard convection, natural convection in square cavity and a spherical explosion in a 3D enclosed box. The numerical results are in good agreement with both analytical solution and results given by previous authors.
Yongliang Feng, Pierre Sagaut, Wenquan Tao. A three dimensional lattice model for thermal compressible flow on standard lattices. Journal of Computational Physics, Elsevier, 2015, 303, pp.514-529. ⟨10.1016/j.jcp.2015.09.011⟩. ⟨hal-01276507⟩