Numerical simulation of the transient flow behaviour in tube bundles using a volume penalization method

We present high resolution numerical simulations of incompressible two-dimensional flows in tube bundles, staggered or in-line, as encountered in heat exchangers or chemical reactors. We study the time evolution of several flows in arrays of cylinders, squares and double-cruciform shaped tubes at a Reynolds number of 200. The numerical scheme is either based on adaptive wavelet or Fourier pseudo-spectral space discretization with adaptive time stepping. A volume penalization method is used to impose no-slip boundary conditions on the tubes. Lift and drag coefficients for the different geometries of tube bundles are compared and perspectives for fluid–structure interaction are given.

K. Schneider, M. Farge. Numerical simulation of the transient flow behaviour in tube bundles using a volume penalization method. Journal of Fluids and Structures, Elsevier, 2005, 20 (4), pp.555-566. ⟨10.1016/j.jfluidstructs.2005.02.006⟩. ⟨hal-01299228⟩

Journal: Journal of Fluids and Structures

Date de publication: 01-05-2005

Auteurs:
  • K. Schneider
  • M. Farge


x >