Blasius flow and heat transfer of fourth-grade fluid with slip

This investigation deals with the effects of slip, magnetic field, and non-Newtonian flow parameters on the flow and heat transfer of an incompressible, electrically conducting fourth-grade fluid past an infinite porous plate. The heat transfer analysis is carried out for two heating processes. The system of highly non-linear differential equations is solved by the shooting method with the fourth-order Runge-Kutta method for moderate values of the parameters. The effective Broyden technique is adopted in order to improve the initial guesses and to satisfy the boundary conditions at infinity. An exceptional cross-over is obtained in the velocity profile in the presence of slip. The fourth-grade fluid parameter is found to increase the momentum boundary layer thickness, whereas the slip parameter substantially decreases it. Similarly, the non-Newtonian fluid parameters and the slip have opposite effects on the thermal boundary layer thickness.

Bikash Sahoo, Sébastien Poncet. Blasius flow and heat transfer of fourth-grade fluid with slip. Applied Mathematics and Mechanics, 2013, 34 (12), pp.1465-1480. ⟨10.1007/s10483-013-1760-6⟩. ⟨hal-00975631⟩

Journal: Applied Mathematics and Mechanics

Date de publication: 12-07-2013

Auteurs:
  • Bikash Sahoo
  • Sébastien Poncet

Digital object identifier (doi): http://dx.doi.org/10.1007/s10483-013-1760-6


x >