Improved wall model treatment for aerodynamic flows in LBM

The article deals with an improved treatment of wall models for the simulation of turbulent flows in the framework of Immersed Wall Boundaries on Cartesian grids. The emphasis is put on the implementa-tion in a Lattice-Boltzmann Method solver without loss of generality, since the proposed approach can be used in Navier-Stokes-based solvers in a straightforward way. The proposed improved wall model im-plementation relies on the combination of several key elements, namely i) the removal of grid points too close to the solid surface and ii) an original computation of wall normal velocity gradient and iii) the interpolation scheme. The new method is successfully assessed considering URANS simulations focusing on steady solutions of the Zero Pressure Gradient turbulent flat plate boundary layer and the turbulent flow around a NACA0012 airfoil at several angles of attack.

Johan Degrigny, Shang-Gui Cai, Jean-François Boussuge, Pierre Sagaut. Improved wall model treatment for aerodynamic flows in LBM. Computers and Fluids, 2021, 227, pp.105041. ⟨10.1016/j.compfluid.2021.105041⟩. ⟨hal-03597146⟩

Journal: Computers and Fluids

Date de publication: 01-01-2021

Auteurs:
  • Johan Degrigny
  • Shang-Gui Cai
  • Jean-François Boussuge
  • Pierre Sagaut

Digital object identifier (doi): http://dx.doi.org/10.1016/j.compfluid.2021.105041


x >