A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows

The present paper aims at building a fast and accurate phase transition solver dedicated to unsteady multiphase flow computations. In a previous contribution (Chiapolino et al. 2017), such a solver was successfully developed to compute thermodynamic equilibrium between a liquid phase and its corresponding vapor phase. The present work extends the solver's range of application by considering a multicomponent gas phase instead of pure vapor, a necessary improvement in most practical applications. The solver proves easy to implement compared to common iterative procedures, and allows systematic CPU savings over 50%, at no cost in terms of accuracy. It is validated against solutions based on an accurate but expensive iterative solver. Its capability to deal with cavitating, evaporating and condensing two-phase flows is highlighted on severe test problems both 1D and 2D.

Alexandre Chiapolino, Pierre Boivin, Richard Saurel. A simple and fast phase transition relaxation solver for compressible multicomponent two-phase flows. Computers and Fluids, Elsevier, 2017, 150, pp.31 - 45. 〈10.1016/j.compfluid.2017.03.022〉. 〈hal-01502389〉

Journal: Computers and Fluids

Date de publication: 01-01-2017

Auteurs:
  • Alexandre Chiapolino
  • Pierre Boivin
  • Richard Saurel

Digital object identifier (doi): http://dx.doi.org/10.1016/j.compfluid.2017.03.022


x >