

Overview

Predict is a modeling and simulation software developed for the calculations of various physical properties in the case of processes using supercritical CO_2

Predict has been developed after several years of academic research. It consist in several tools which can be used for the calculations or modeling of various properties

- Sovova's mathematical parameters in the case of SC-CO₂ extraction
- Chrastil, Adachi, Mendez-Santiago, Gordillon and Del Valle model parameters for the modeling of solute solubility in SC-CO₂
- Prediction of vegetable oils and various other solutes (Argan oil, grape seeds oil, beta carotene, etc.) in SC-CO2
- Hansen parameters for the choice of co-solvent
- CO₂-Solvent LVE at high pressure
- CO₂-solvent mixture properties (density, Cp, etc.)
- Scale-up calculations for SC-CO₂ extraction process
- And more !

It can be used as well as for academic stuides as for industrial applications (select the optimal operating conditions parameters and avoid or reduce the ocsts of experimental studies)

SC-CO₂ extraction kinetics modeling

SC-CO₂ experimental extraction kinetics can be modelled using the Sovova's mathematical model The model parameters as well as the calculated points can be exported in Excel file

SFE Modelling - C X	🔊 SFE Modelling — 🗆		
Type A Type B Type C Type D	Type A Type B Type C Type D		
Experimental universe first setting the	Experimental values First estimation	MATLAB App — — X	
Experimental values First estimation			
Data Value Deviation ys(%) Cu (kg(solute)/kg(solid) 0.25	Data Value Ation first part solubility (%) Cu (kg(solute)/kg(solid) 0.64	4 Experimental values Solubility part	
N (g) 7. position end solubility 4	N (g) (* 0 xu (kg(solute)/kg(insoluble solid) 1.778	8 Column 1 Column 2 Cu (kg oll/kg biomass) 0.23	
P (bar) 300. 8.2653	P (bar) 300 0	N (g) 7.2680 ^	When SC-CO ₂ experimental extraction
Q (kg/h) 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Q (kg/h) (36.4807	P (bar) 300.0000 ys (kg oil/kg CO2) 0.00513	
mu CO2 (Pa.S) 0. 6.9329 xu (kg(solute)/kg(insoluble solid) 0.3333	Visco CO2 (Pa.S) (32.0066 Ys (kg solute /kg CO2) 0.00685	5 T (K) 333.1500	kinetics is not complete, it is possible to
rho CO2 (kg/m3) 827. 13.8519	rho CO2 (kg/m3) 86: 49.7813 Calculation	Q (kg/h) 0.1400 Plot solubility	bradict a bassible and of the artraction
Cu 1 0 38.0684	Cu 1 (73.5415	visco CO2 (va.s) 0.0001	predict a possible end of the extraction
	Deviation with linear part (%)		curve
Import Excel Data Deviation with linear part	Import Excel Data q1 estimation 15.8		Curve
Madelling		Import Excel data	
movening	Modelling		
qc estimation 32.1 Parameters Values	qc 338 C1 0.1 Parameters Values	Prediction	
ys (kg solute / kg CO2) 0.0051 A	ys (kg solute / kg solve 0.0069 🔺	r 0.9 qc 55 Parameters Values	
C1 1.2815	R ² 1	C1 0 1684	
end ratio CO2/biomass (kg/kg) 100 C2 0.0290	end ratio CO2/biomass (kg/kg) 300	C1 0.1 C2 0.1 C2 0.1 C2 0.1 C2 0.1 C2 0.0188	
oil MW (g/mol) 800 ksas 0.0001	solute MW (g/mol) 800 22 0.0073	qend 100 qc (kg CO2 / kg inso 54.6687	
r 0.2057	r 0.8462	ksas (10^-5 0.4877	
Calculation ac 24 7059	calculations xt 1.7129	r 0.899 File Edit Vie	ew Insert Tools Desktop Window Help
	К 0.0027		
sample name Grape seeds Export Data Excel	qc (kg CO2/ kg insolubl 314.0600	sample name sample	
	sample name Argan Export data to Excel	Save to Excel	
File Edit View Insert Tools Desktop Window Help	File File Many Least Table Dedate Window Under	0.25	
	File Edit View Insert Tools Desktop Window Help		
300 bar-60 °C	▲ 身目 ⑲ ♥ ♥ ☆	0.2 -	
	0.7		
0.2	0.6		
		Q 0.15	
a second s	0.5		
.5 0.15		Can be used for theorical	
	S O O	purposes and for scale up	
<i>꽃</i> 0.1	8 0.3 C	colculations	
	E	Calculations	
	0.2	0.05 -	
0.05			······································
	0.1		
	ø	0	
	0 50 100 150 200 250 300	0	10 20 30 40 50 60 70 80
CO / biomass mass ratio (kg/kg)	mass ratio CO ₂ / biomass (kg/kg)		mass ratio (CO ₂ / biomass (kg/kg))

SC-CO₂ extraction scale up

Considering the extraction kinetic established at laboratory scale, this tool is used for the calculation of SC-CO₂ flow rate which can be applied in pilot or industrial scale

Iow rate calculation Autoclave dimensio	in calc
mall scale (Lab scale)	Large scale (pilot scale)
L ss (cm) 16 D ss (cm) 1.2	selection L Is (cm) 150 L / D Is 5 O Dimension O volume D Is (cm) 30
L / D ss 13.33	Volume (cm3) 0 V (L) 106
sample bed porosity 0.6	app density (kg/m3) 416 Filling rate 0.8
d mean (μm) 750	mass of sample (kg) 35.29
Q ss (kg/h) 0.1	CO2 valacity constant in the subsection subscience
tr ss (min) 9.665	$O[r/kg/b] = 52.5 \pm t/b] = 23.75 \pm t/min) = 00.61$
Rep ss 0.8597	Rep LS 0.8597
CO2/biomass mass ratio (kg/kg) 58	CO2 residence time in the extraction autoclave constant
P (bar) 400	Q ls (kg/h) 585.9 t (h) 3.493 tr (min) 9.665
T (°C) 60	Rep LS 8.06
Calculate	Same CO2/biomass mass ratio
	extraction time (h) 3 Q Is (kg/h) 682.2

SC-CO₂ diffusion and transfer properties

Prop CO2

Knowing the molecular weight of solute in a porous media, this tool can calculate the diffusion and transfer properties of this solute in SC-CO₂

It can also be used for the calculation of flow regime in an autoclave

Diffusion / transfer	usion / transfer Thermophysical		Thermodyn	Thermodynamic properties SC-CO2	
Diffusion coefficient so	lute/CO2 (D21)				
Operating conditions		Properties			
P (bar)	200	D21 (m²/s)	6.773e-09	Pe	0.187
T (°C)	40	kf (m/s)	3.219e-05	ρ (kg/m3)	842.8
MW (g/mol)	800	Dax (m²/s)	0.0002618	υ (Pa.s)	7.835e-05
dmean (μm)	750	Sc	13.73	Rep	1.959
Q (kg/h)	0.15	Sh	3.565	Re	2.469
З	0.7	tr (min)	6.1	u inters (m/s)	0.000306
L autoclave (cm)	16	tr full auto (mi	n) 8.71	5 L/D	13.33
D autoclave (cm)	1.2				
Calculat		u (m/s)	0.0004371		

- 🗆 🛛

Modeling and prediction of the solubility in SC-CO₂ of various solutes

Experimental results of solute solubilities in SC-CO₂ can be modelled considering 5 models : Chrastil, Adachi & Lu, Mendez-Santiago & Teja, Gordillo, Del Devalle & Aguilera

Prediction of vegetable oils solubilities in SC-CO₂ according the correlations of Sovova and Del Valle

Modellind	Calculator	Prediction vegetable oils	data		
0		Ű			
Operating	conditions	Solubility of vegetable	oils Del Valle 1988		
P (bar)	220	γs (g oil / kg CO2)	4.152		
T (°C)	40	Solubility of Vegetable	oils at high pressure)	Del Valle 2012	
C	alculate	Solubility of Vegetuble	ons at myn pressare i		
p CO2 (k	g/m3) 857	ys (g oll / kg CO2)	4.476		
		Solubility of two Veget	able oils Sovova 2001		

	002					- 0	- >
Modelling	Calcu	lator Prediction	vegetable oils	data			
modeling	Calcu	iator i rediction	vegetable ons	uata			
	Solute	Grape seeds 🔻	P (bar)		350 T (°C)	4	5
		Argan kernels	*				
		Astaxanthin			Calculate		
		Babassu oil					
		heta carotene		vs (g oi	1 / kg SCC02)	10.4	
		occa carocene				10.4	/
		castor (Ricinus comr	munis L) oil	7- 10 -	., ., .,	10.4	<u></u>
		castor (Ricinus comr	munis L) oil	7-18-1	.,	10.4	<u></u>
		castor (Ricinus comr Corn oil Evening primerose s	munis L) oil	erties	min	max	/
		castor (Ricinus comr Corn oil Evening primerose s	munis L) oil	erties	min 200	max	450
		castor (Ricinus comr Corn oil Evening primerose s Grape seeds	munis L) oil seeds 2ar) ()	erties	min 200	max	450
		castor (Ricinus comr Corn oil Evening primerose s Grape seeds Jatropha kernels	nunis L) oil seeds period par) ()	erties	min 200	max	450
		castor (Ricinus comr Corn oil Evening primerose s Grape seeds Jatropha kernels Limonene	nunis L) oil eeds ar ()	erties	min 200	max	450
		castor (Ricinus comr Corn oil Evening primerose s Grape seeds Jatropha kernels Limonene Lycopène	nunis L) oil seeds 2ar) ()	erties	min 200	max	450
		castor (Ricinus com Corn oil Evening primerose s Grape seeds Jatropha kernels Limonene Lycopène Palm kernels	nunis L) oil seeds par	erties	min 200	max	450
		castor (Ricinus comr Corn oil Evening primerose s Grape seeds Jatropha kernels Limonene Lycopène Palm kernels passion fruit seed oi	nunis L) oil seeds sarj ()	erties	min 200	max	450

Can be used for the selection of experimental operating conditions in the case of $SC-CO_2$ extraction or fractionation

Calculation of the solubility of various types of oil in SC-CO₂ over a wide range of pressures and temperatures

6.55 6.6 6.65 6.7 6.75 6.8 6.85 6.9

Calculation of pure SC-CO₂ and CO₂-solvent mixtures properties at high pressure

CO₂-solvent liquid-vapor equilibrium at high pressure and temperature

CO₂-solvent mixtures physical properties calculations : density, heat capacity, enthalpy

0.2295

4.977e-05

891.6

53.74

13.52

347

72.93

0.0001061

0.2991

0.2738

742

58.36

13.4

5.938e-05

Mixture properties

Vm lig (m3/mol)

f liq (bar)

hliq (kJ/mol)

Tcm (K)

Pcm (bar)

Z vap

vcm (m3/mol)

Vm vap (m3/mol)

rho vap (kg/m3)

f vap (bar)

hvap (kJ/mol)

rho liq (kg/m3)

Z lig

313

120

0.9725

368.8

Can be used for particle generation process, co-solvent extraction, etc.

Determination of the best co-solvent and the optimal experimental operating conditions using Hansen method

properties

Hansen method is applied in the case of $SC-CO_2$ extraction with a co-solvent Various co-solvent can be selected and various operating conditions can be chosen This tool help to find the best co-solvent and the optimal operating conditions for the extraction of a known compound

Joback method can also be used if necessary for the calculation of thermophysical

Non ring groups	Ring groups	Oxygene groups		
-CH3 2	-CH2- 0	-OH (alcohol)	0 >C=O (ring)	0
-CH2- 0		-OH (phenol)	0 O=CH- (aldehyde)	0
		-O- (non ring)	0 -COOH (acid)	0
>CH- 0	>C< 0	-O- (ring)	0 -COO- (ester)	0
>C< 0	=CH- 0	>C=O (non ring)	1 =O (other than above)	0
=CH2- 0	=C< 0	Nitrogen groups		
=CH- 0	Halogen groups	-NH2	0 -N= (ring)	0
=C< 0	-F 0	>NH (non ring)	0 =NH	0
=C= 0	-ci 0	>NH (ring)	0 -CN	0
≡CH 0	-Br 0	>N- (non ring)	0 -NO2	0
≡ C- 0	-1 0	-N= (non ring)	0	
Sulfur groups	Т (К) 273.15	Column 1	Column 2	
	Name Sample	T ebullition (K)		322.1100
-5H		T fusion (K)		173.5000
-S- (non ring)	0 Calculate	Tc (K)		500.5590
-S- (ring)	0	Pc (bar)		48.0250
	Export to Excel	Vc (cm3/mol)		209.5000

*SC-CO*₂ modeling and simulation software

Contact for consulting and scientific collaboration

Adil MOUAHID adil.mouahid@univ-amu.fr https://orcid.org/0000-0002-3033-9115